Math, asked by himanshub5007, 1 year ago

Find the value of _tan 38 - cot 22

Answers

Answered by Shaizakincsem
7

Thank you for asking this question.

Here is your answer.

tan 38° - cot 22°

= sin 38°/cos 38° - cos 22°/sin 22°

= sin 38° sin 22° - cos 38° cos 22°/ cos 38° sin 22°/ cos 38° sin 22°

= - cos (38° + 22°)/ cos 38° sin 22°

= - cos 60° / cos 38° sin 22°

= -1 sec 38°/2 cos sec 22°

If there is any confusion please leave a comment below.

Answered by harendrachoubay
0

The value of \tan 38 - \cot 22 is -\dfrac{1}{\cos (106) -\cos (30)}.

Step-by-step explanation:

We have,

\tan 38 - \cot 22

= [tex]\tan 38 - \cot (90-68)

=\tan 38 - \tan 68

[ ∵ \cot (90-\theta)= \tan \theta ]

= \dfrac{\sin 38}{\cos 38} - \dfrac{\sin 68}{\cos 68}

=\dfrac{\sin 38\times \cos 68-\cos 38\times \sin 68}{\cos 68\times \cos 38}

=2\dfrac{\sin (38-68)}{2\cos 68\times \cos 38}

=2\dfrac{\sin (-30)}{\cos (68 + 38) -\cos (68 - 38)}

=-2\dfrac{\frac{1}{2}}{\cos (106) -\cos (30)}

=-\dfrac{1}{\cos (106) -\cos (30)}

Hence, the value of \tan 38 - \cot 22 is -\dfrac{1}{\cos (106) -\cos (30)}.

Similar questions