find the value of tan 3A - tan 2A - tan A
Answers
Answered by
11
tan2A can be written as tan(3A-A)
now we have tan(a-b)=tana-tanb/1+tanatanb
here a =2A & b=A
tan2A=tan(3A-A)=tan3A-tanA/1+tan3AtanA
tan2A(1+tan3Atan2A) = tan3A-tanA
tan2A + tan2Atan3AtanA = tan3A -tanA or
tan2Atan3AtanA = tan3A -tanA-tan2A
hence proved
now we have tan(a-b)=tana-tanb/1+tanatanb
here a =2A & b=A
tan2A=tan(3A-A)=tan3A-tanA/1+tan3AtanA
tan2A(1+tan3Atan2A) = tan3A-tanA
tan2A + tan2Atan3AtanA = tan3A -tanA or
tan2Atan3AtanA = tan3A -tanA-tan2A
hence proved
Answered by
1
Answer:
tan2A
Step-by-step explanation:
tan3A - tan2A - tanA = tanA.tan2A.tan3A
tan3A - tanA = tan3A.tan2A.tanA + tan2A
tan3A - tanA = tan2A(tan3A.tanA + 1)
= tan2A
Similar questions