find the value of tan(-4π/3)
Answers
Step-by-step explanation:
hope it helps you and please mark me as brainliest
Answer:
tan(4
3
π
)
view step
4\times \left(\frac{\pi }{3}\right)\approx 4.188790205
\tan(\frac{4\pi }{3})\approx 1.732050808
tan(
3
4π
)≈1.732050808
view step
\tan(x+y)=\frac{\tan(x)+\tan(y)}{1-\tan(x)\tan(y)}
x=\piy=\frac{\pi }{3}
\tan(\pi +\frac{\pi }{3})=\frac{\tan(\pi )+\tan(\frac{\pi }{3})}{1-\tan(\pi )\tan(\frac{\pi }{3})}
tan(π+
3
π
)=
1−tan(π)tan(
3
π
)
tan(π)+tan(
3
π
)
view step
\tan(\pi )\approx -0
\frac{0+\tan(\frac{\pi }{3})}{1-0\tan(\frac{\pi }{3})}\approx 1.732050808
1−0tan(
3
π
)
0+tan(
3
π
)
≈1.732050808
view step
\tan(\frac{\pi }{3})\approx 1.732050808
\frac{0+\sqrt{3}}{1-0\sqrt{3}}\approx 1.732050808
1−0
3
0+
3
≈1.732050808
view step
\sqrt{3}\approx 1.732050808
3
≈1.732050808