Math, asked by samriddhipatel, 8 months ago

find the value of tan(-4π/3) ​

Answers

Answered by sweetykeerthana68329
1

Step-by-step explanation:

hope it helps you and please mark me as brainliest

Attachments:
Answered by debasmitasur123
1

Answer:

tan(4

3

π

)

view step

4\times \left(\frac{\pi }{3}\right)\approx 4.188790205

\tan(\frac{4\pi }{3})\approx 1.732050808

tan(

3

)≈1.732050808

view step

\tan(x+y)=\frac{\tan(x)+\tan(y)}{1-\tan(x)\tan(y)}

x=\piy=\frac{\pi }{3}

\tan(\pi +\frac{\pi }{3})=\frac{\tan(\pi )+\tan(\frac{\pi }{3})}{1-\tan(\pi )\tan(\frac{\pi }{3})}

tan(π+

3

π

)=

1−tan(π)tan(

3

π

)

tan(π)+tan(

3

π

)

view step

\tan(\pi )\approx -0

\frac{0+\tan(\frac{\pi }{3})}{1-0\tan(\frac{\pi }{3})}\approx 1.732050808

1−0tan(

3

π

)

0+tan(

3

π

)

≈1.732050808

view step

\tan(\frac{\pi }{3})\approx 1.732050808

\frac{0+\sqrt{3}}{1-0\sqrt{3}}\approx 1.732050808

1−0

3

0+

3

≈1.732050808

view step

\sqrt{3}\approx 1.732050808

3

≈1.732050808

Similar questions