Math, asked by aroraarsh15, 1 year ago

find the value of tan 45/2 degree

Answers

Answered by Anonymous
23
Hi friend..
Here is the solution of the question asked by you

✴️ SOLUTION ✴️

First, rewrite the angle as the product of 1/2and an angle where the values of the six trigonometric functions are known. In this case, 45/2 can be rewritten as (1/2)⋅45(1/2)⋅45.

tan((1/2)⋅45)tan((1/2)⋅45)

Use the half-angle identity for tangent to simplify the expression. The formula states that tan(θ2)=sin(θ)1+cos(θ)tan(θ2)=sin(θ)1+cos(θ).

sin(45)1+cos(45)sin(45)1+cos(45)

Simplify the result.

√2−12-1

The result can be shown in both exact and decimal forms.

Exact Form:

√2−12-1

Decimal Form:

0.41421356

I hope it will help you
☺️

muslimah96: no
muslimah96: @yahyahamad
Anonymous: thanks MÝ ďêãř friend... @#muslimah96#...its totally my pleasure
india8013: what u say
india8013: plz stop....
india8013: sorry to talk
india8013: if u don't like yahyaahmad
india8013: and muslimah
Answered by nishu9915
6
=tan2x=2tanx/1-tansq.x
so tan x=2tanx/2 (1/1-tansq.x/2)
=by putting x=45
tan45 =2tan45/2 (1/1-(tan45/2)^2)
1=2tan45/2 (1/1-(tan45/2)^2)
1-(tan45/2)^2=2tan45/2
(1-tan45/2)(1+tan45/2)=2tan45/2
Similar questions