Math, asked by gsmita27, 11 months ago

find the value of tan(alpha+beta), given that cot alpha=1/2, alpha€(pi,3pie/2), sec beta=-5/3, beta€(pie/2,pie). Also state the quadrant in which alpha+beta terminates

Answers

Answered by MaheswariS
64

Answer:

tan(\alpha+\beta)=\frac{2}{11}

Step-by-step explanation:

Given:

cot\alpha=\frac{1}{2} and sec\beta=\frac{-5}{3}

cot\alpha=\frac{1}{2}

Taking reciprocals

tan\alpha=2 and

sec\beta=\frac{-5}{3}

tan^2\beta=sec^2\beta-1

tan^2\beta=(\frac{-5}{3})^2-1

tan^2\beta=\frac{25}{9}-1

tan^2\beta=\frac{25-9}{9}

tan^2\beta=\frac{16}{9}

tan\beta=\sqrt{\frac{16}{9}}

tan\beta=±\frac{4}{3}

since \beta lies in II quadrant, tan\beta is negative

tan\beta=\frac{-4}{3}

Now,

tan(\alpha+\beta)

=\frac{tan\alpha+tan\beta}{1-tan\alpha.tan\beta}

=\frac{2+(\frac{-4}{3})}{1-2(\frac{-4}{3})}

=\frac{\frac{6-4}{3}}{1+\frac{8}{3}}

=\frac{\frac{6-4}{3}}{1+\frac{8}{3}}

=\frac{\frac{2}{3}}{\frac{3+8}{3}}

=\frac{\frac{2}{3}}{\frac{11}{3}}

=\frac{2}{11}

This implies,

tan(\alpha+\beta)=\frac{2}{11}

since tan(\alpha+\beta) is positive, \alpha+\beta lies in either I quadrant or III quadrant.

As per data,

\alpha+\beta lies in I quadrant

Answered by priyanshuc224
6

Answer:

your answer..............

Step-by-step explanation:

tan(α+β)=

11

2

Step-by-step explanation:

Given:

cot\alpha=\frac{1}{2}cotα=

2

1

and sec\beta=\frac{-5}{3}secβ=

3

−5

cot\alpha=\frac{1}{2}cotα=

2

1

Taking reciprocals

tan\alpha=2tanα=2 and

sec\beta=\frac{-5}{3}secβ=

3

−5

tan^2\beta=sec^2\beta-1tan

2

β=sec

2

β−1

tan^2\beta=(\frac{-5}{3})^2-1tan

2

β=(

3

−5

)

2

−1

tan^2\beta=\frac{25}{9}-1tan

2

β=

9

25

−1

tan^2\beta=\frac{25-9}{9}tan

2

β=

9

25−9

tan^2\beta=\frac{16}{9}tan

2

β=

9

16

tan\beta=\sqrt{\frac{16}{9}}tanβ=

9

16

tan\beta=tanβ= ±\frac{4}{3}

3

4

since \betaβ lies in II quadrant, tan\betatanβ is negative

tan\beta=\frac{-4}{3}tanβ=

3

−4

Now,

tan(\alpha+\beta)tan(α+β)

=\frac{tan\alpha+tan\beta}{1-tan\alpha.tan\beta}=

1−tanα.tanβ

tanα+tanβ

=\frac{2+(\frac{-4}{3})}{1-2(\frac{-4}{3})}=

1−2(

3

−4

)

2+(

3

−4

)

=\frac{\frac{6-4}{3}}{1+\frac{8}{3}}=

1+

3

8

3

6−4

=\frac{\frac{6-4}{3}}{1+\frac{8}{3}}=

1+

3

8

3

6−4

=\frac{\frac{2}{3}}{\frac{3+8}{3}}=

3

3+8

3

2

=\frac{\frac{2}{3}}{\frac{11}{3}}=

3

11

3

2

=\frac{2}{11}=

11

2

This implies,

tan(\alpha+\beta)=\frac{2}{11}tan(α+β)=

11

2

since tan(\alpha+\beta)tan(α+β) is positive, \alpha+\betaα+β lies in either I quadrant or III quadrant.

As per data,

\alpha+\betaα+β lies in I quadrant

Similar questions