find the value of tan(alpha+beta), given that cot alpha=1/2, alpha€(pi,3pie/2), sec beta=-5/3, beta€(pie/2,pie). Also state the quadrant in which alpha+beta terminates
Answers
Answer:
Step-by-step explanation:
Given:
and
Taking reciprocals
and
±
since lies in II quadrant, is negative
Now,
This implies,
since is positive, lies in either I quadrant or III quadrant.
As per data,
lies in I quadrant
Answer:
your answer..............
Step-by-step explanation:
tan(α+β)=
11
2
Step-by-step explanation:
Given:
cot\alpha=\frac{1}{2}cotα=
2
1
and sec\beta=\frac{-5}{3}secβ=
3
−5
cot\alpha=\frac{1}{2}cotα=
2
1
Taking reciprocals
tan\alpha=2tanα=2 and
sec\beta=\frac{-5}{3}secβ=
3
−5
tan^2\beta=sec^2\beta-1tan
2
β=sec
2
β−1
tan^2\beta=(\frac{-5}{3})^2-1tan
2
β=(
3
−5
)
2
−1
tan^2\beta=\frac{25}{9}-1tan
2
β=
9
25
−1
tan^2\beta=\frac{25-9}{9}tan
2
β=
9
25−9
tan^2\beta=\frac{16}{9}tan
2
β=
9
16
tan\beta=\sqrt{\frac{16}{9}}tanβ=
9
16
tan\beta=tanβ= ±\frac{4}{3}
3
4
since \betaβ lies in II quadrant, tan\betatanβ is negative
tan\beta=\frac{-4}{3}tanβ=
3
−4
Now,
tan(\alpha+\beta)tan(α+β)
=\frac{tan\alpha+tan\beta}{1-tan\alpha.tan\beta}=
1−tanα.tanβ
tanα+tanβ
=\frac{2+(\frac{-4}{3})}{1-2(\frac{-4}{3})}=
1−2(
3
−4
)
2+(
3
−4
)
=\frac{\frac{6-4}{3}}{1+\frac{8}{3}}=
1+
3
8
3
6−4
=\frac{\frac{6-4}{3}}{1+\frac{8}{3}}=
1+
3
8
3
6−4
=\frac{\frac{2}{3}}{\frac{3+8}{3}}=
3
3+8
3
2
=\frac{\frac{2}{3}}{\frac{11}{3}}=
3
11
3
2
=\frac{2}{11}=
11
2
This implies,
tan(\alpha+\beta)=\frac{2}{11}tan(α+β)=
11
2
since tan(\alpha+\beta)tan(α+β) is positive, \alpha+\betaα+β lies in either I quadrant or III quadrant.
As per data,
\alpha+\betaα+β lies in I quadrant