Find the value of tan inverse 1+ tan inverse 2+tan inverse 3
Answers
Answered by
0
Answer
tan-1 (1) + tan-1 (2) + tan-1 (3) = π
Attachments:
Answered by
0
Let tan
−1
(1)=x
⇒1=tanx
Let tan
−1
(2)=y
⇒2=tany
Let tan
−1
(3)=z
⇒3=tanz
tan(x+y+z)=
1−tanx.tany−tanx.tanz−tany.tanz
tanx+tany+tanz−tanx.tany.tanz
=
1−1×2−1×3−2×3
1+2+3−1×2×3
=0
⇒x+y+z=π
tan
−1
(1)+tan
−1
(2)+tan
−1
(3)=π
( x+y+z cannot be equal to zero, because
tan
−1
(1)+tan
−1
(2)+tan
−1
(3) will have some value greater than zero )
Similar questions
English,
1 month ago
English,
1 month ago
English,
2 months ago
English,
10 months ago
Social Sciences,
10 months ago