Math, asked by rahahul4603, 1 year ago

Find the value of tan pi / 24

Answers

Answered by aquialaska
18

Answer:

tan\,\frac{\pi}{24}=-2-\sqrt{3}+2\sqrt{2+\sqrt{3}}

Step-by-step explanation:

To Find: Value of tan\,\frac{\pi}{24}

Formula used to find the value is given by

tan\,2x=\frac{2tan\,x}{1-tan^2\,x}

We know that tan\,\frac{\pi}{6}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}  

let x=tan\,\frac{\pi}{12} and use the formula we get,

tan\,2\times\frac{\pi}{12}=\frac{2x}{1-x^2}

tan\,\frac{\pi}{6}=\frac{2x}{1-x^2}

\frac{\sqrt{3}}{3}=\frac{2x}{1-x^2}

here x=tan\,\frac{\pi}{12}

⇒ 6x = √3 -√3x²

⇒ x² + 2√3x -1 = 0  

using quadratic formula we get,

x=tan\,\frac{\pi}{12}=2-\sqrt{3}

Now, let y=tan\,\frac{\pi}{24}  

tan\,2\times\frac{\pi}{24}=\frac{2y}{1-y^2}

tan\,\frac{\pi}{12}=\frac{2y}{1-y^2}

2-\sqrt{3}=\frac{2y}{1-y^2}  

⇒ ( 2-√3 )y² + 2y - ( 2-√3 ) = 0  

⇒ y² + 2( 2+√3 ) + 1 = 0.  

Again using quadratic formula we get,

y=tan\,\frac{\pi}{24}=-2-\sqrt{3}+2\sqrt{2+\sqrt{3}}

Therefore, tan\,\frac{\pi}{24}=-2-\sqrt{3}+2\sqrt{2+\sqrt{3}}

Similar questions