Math, asked by dhanushshetty86, 3 months ago

find the value of tan teta-cot(90-teta)​

Answers

Answered by kanishkaadaga
0

Answer:

hii plz mere channel ko follow kariye plz pLz pzlz

Answered by ananya21986
0

Answer:

PLEASE MARK ME AS BRAINLEST. THANK YOU

Step-by-step explanation:

+

tan15tan37tan53tan75

cos

2

(50+θ)tan

2

(40−θ)

=−1+sin

2

(40−θ)tan

2

(40−θ)

Step-by-step explanation:

\begin{gathered} Value \: of \: \\\frac{[cot(90-\theta)tan\theta-cosec(90-\theta)sec\theta]}{sin12 cos15 sec78 cosec75)}+\frac{cos^{2}(50+\theta)tan^{2}(40-\theta)}{tan15 tan37 tan53 tan75}\end{gathered}

Valueof

sin12cos15sec78cosec75)

[cot(90−θ)tanθ−cosec(90−θ)secθ]

+

tan15tan37tan53tan75

cos

2

(50+θ)tan

2

(40−θ)

=\frac{tan\theta tan\theta-sec\theta sec\theta}{sin12sec(90-12)cos15cosec(90-15)}+\frac{cos^2[90-(40-\theta)]tan^{2}(40-\theta)}{tan15tan(90-15)tan37tan(90-37)}=

sin12sec(90−12)cos15cosec(90−15)

tanθtanθ−secθsecθ

+

tan15tan(90−15)tan37tan(90−37)

cos

2

[90−(40−θ)]tan

2

(40−θ)

=\frac{(tan^{2}\theta -sec^{2}\theta)}{(sin12cosec12)(cos15sec15)}+\frac{sin^2(40-\theta)tan^{2}(40-\theta)}{(tan15cot15)(tan37cot37)}=

(sin12cosec12)(cos15sec15)

(tan

2

θ−sec

2

θ)

+

(tan15cot15)(tan37cot37)

sin

2

(40−θ)tan

2

(40−θ)

=\frac{-1}{1 \times 1}+\frac{sin^2(40-\theta)tan^{2}(40-\theta)}{1 \times 1}=

1×1

−1

+

1×1

sin

2

(40−θ)tan

2

(40−θ)

=-1+sin^2(40-\theta)tan^{2}(40-\theta)=−1+sin

2

(40−θ)tan

2

(40−θ)

Therefore,

\begin{gathered} Value \: of \: \\\frac{[cot(90-\theta)tan\theta-cosec(90-\theta)sec\theta]}{sin12 cos15 sec78 cosec75)}+\frac{cos^{2}(50+\theta)tan^{2}(40-\theta)}{tan15 tan37 tan53 tan75} \\\\=-1+sin^2(40-\theta)tan^{2}(40-\theta)\end{gathered}

Valueof

sin12cos15sec78cosec75)

[cot(90−θ)tanθ−cosec(90−θ)secθ]

+

tan15tan37tan53tan75

cos

2

(50+θ)tan

2

(40−θ)

=−1+sin

2

(40−θ)tan

2

(40−θ)

HOPE IT HELPS YOU

Similar questions