Math, asked by venkatmahesh06, 4 months ago

Find the value of tan x if 5sin x=3​

Answers

Answered by EnchantedGirl
8

Given:-

  • 5sin x = 3

To find:-

  • Value of tan x

Solution:-

Given,

→5sin x = 3

⇒sin x = 3/5

We know,

Sin x = opposite side/hypotenuse

Hence,

→Opposite side = 3

→Hypotenuse = 5

Using pythagoras theorem,

(Opposite side)²+(Adjacent side)²=(Hypotenuse)²

Putting values,

⇒ 3² + (Adj)² = 5²

⇒ (Adj)²= 5²-3²

⇒ (Adj)² = 25 - 9

⇒ Adj = √16

⇒ Adjacent side = 4cm

Using the formula,

Tan x = Opposite side/Adjacent side

Putting values,

Tan x = 3/4

Hence, the values of tan x is 3/4

______________

Know more:-

More formula's:

  • Tan x = sin x/cos x
  • Sin x = 1/cosec x
  • Cosec x = Hypotenuse / opposite side
  • Tan x = 1/cot x
  • Cot x = Adjacent side/opposite side

______________

Answered by Oneioiic14
4

Given :-

\sf{★\  5 \ sin \  x = 3}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

To find :-

\sf{★ \ value \  of  \ tan \  x}

Solution :-⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

5 Sinx = 3

Sinx = 3 / 5

  • We know that ,

SinΦ = Perpendicular / Hypotenuse.

Hypotenuse² = Perpendicular² + Base²

5² = 3² + Base²

25 - 9 = Base²

16 = Base²

\sf\pink{⟹ \ Base  \ =  \ 4}

  • Tanx = Perpendicular / Base

Tan x = 3 / 4

\large{\boxed{\boxed{\sf{★ \ Tan x = 3 / 4  }}}}

Similar questions