Math, asked by Patrick121, 8 months ago

Find the value of: tan10, tan20,………..tan450,…………tan890

Answers

Answered by pulakmath007
11

SOLUTION

TO DETERMINE

The value of

 \sf{ \tan {10}^{ \circ}. \tan {20}^{ \circ}. \: ... \:\tan {450}^{ \circ} \:  \: .. \:\tan {890}^{ \circ}  }

EVALUATION

We have to find the value of

 \sf{ \tan {10}^{ \circ}. \tan {20}^{ \circ}. \: ... \:\tan {450}^{ \circ} \:  \: .. \:\tan {890}^{ \circ}  }

So the given expression

 \sf{ =  \tan {10}^{ \circ}. \tan {20}^{ \circ}. \: ... \:\tan {450}^{ \circ} \:  \: .. \:\tan {890}^{ \circ}  }

 \sf{ \tan {10}^{ \circ}. \tan {20}^{ \circ}. \: .\tan {360}^{ \circ}.. \:\tan {450}^{ \circ} \:  \: .. \:\tan {890}^{ \circ}  }

Now

 \sf{\tan {360}^{ \circ} }

 \sf{ =  \tan (4 \times {90}^{ \circ} +  {0}^{ \circ} ) }

 \sf{ =\tan {0}^{ \circ} }

 \sf{ =0}

Therefore

 \sf{ \tan {10}^{ \circ}. \tan {20}^{ \circ}. \: ... \:\tan {450}^{ \circ} \:  \: .. \:\tan {890}^{ \circ}  }

 \sf{  = \tan {10}^{ \circ}. \tan {20}^{ \circ}. \: .\tan {360}^{ \circ}.. \:\tan {450}^{ \circ} \:  \: .. \:\tan {890}^{ \circ}  }

 \sf{ = 0  }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If cosθ+secθ=√2,find the value of cos²θ+sec²θ

https://brainly.in/question/25478419

2. Value of 3 + cot 80 cot 20/cot80+cot20 is equal to

https://brainly.in/question/17024513

3. In a triangle, prove that (b+c-a)(cotB/2+cotC/2)=2a×cotA/2

https://brainly.in/question/19793971

Similar questions