Math, asked by sanjit57948, 8 months ago

Find the value of --
tan20°. tan30°


Plz write the correct answer...
Correct will be marked + 10 thnx

⚠️ No Spam

Answers

Answered by bcm881144gmailcom
1

Answer:

prove that :tan20 tan30 tan40 =tan10

Step-by-step explanation:

prove that :tan20 tan30 tan40 =tan10

Answered by Umar1324
11

Answer:

tan(15o)

=tan(45o−30o)

As,

tan(A−B)=tan(A)−tan(B)1+tan(A)tan(B)

So,

tan(15o)=tan(45o)−tan(30o)1+tan(45o)tan(30o)

As, we know,

tan(45o)=1

tan(30o)=13√

So,

tan(15o)=1−13√1+13√

=3√−13√3√+13√

=3√−13√+1

=(3√−1)2(3√+1)(3√−1)

=3−23√+13−1

=4−23√2

⟹tan(15o)=2−3–√

Similarly,

tan(75∘)

=tan(45∘+30∘)

As,

tan(A+B)=tan(A)+tan(B)1−tan(A)tan(B)

So,

tan(75∘)=tan(45∘)+tan(30∘)1−tan(45∘)tan(30∘)

As, we know,

tan(45∘)=1

tan(30∘)=13√

So,

tan(75∘)=1+13√1−13√

=3√+13√3√−13√

=3√+13√−1

=(3√+1)2(3√−1)(3√+1)

=3+23√+13−1

=4+23√2

⟹tan(75∘)=2+3–√

Values of tan(20∘) and tan(70∘) cannot be found out simple analytically.

Here I have done ✅ xd

Similar questions