Find the value of --
tan20°. tan30°
Plz write the correct answer...
Correct will be marked + 10 thnx
⚠️ No Spam
Answers
Answered by
1
Answer:
prove that :tan20 tan30 tan40 =tan10
Step-by-step explanation:
prove that :tan20 tan30 tan40 =tan10
Answered by
11
Answer:
tan(15o)
=tan(45o−30o)
As,
tan(A−B)=tan(A)−tan(B)1+tan(A)tan(B)
So,
tan(15o)=tan(45o)−tan(30o)1+tan(45o)tan(30o)
As, we know,
tan(45o)=1
tan(30o)=13√
So,
tan(15o)=1−13√1+13√
=3√−13√3√+13√
=3√−13√+1
=(3√−1)2(3√+1)(3√−1)
=3−23√+13−1
=4−23√2
⟹tan(15o)=2−3–√
Similarly,
tan(75∘)
=tan(45∘+30∘)
As,
tan(A+B)=tan(A)+tan(B)1−tan(A)tan(B)
So,
tan(75∘)=tan(45∘)+tan(30∘)1−tan(45∘)tan(30∘)
As, we know,
tan(45∘)=1
tan(30∘)=13√
So,
tan(75∘)=1+13√1−13√
=3√+13√3√−13√
=3√+13√−1
=(3√+1)2(3√−1)(3√+1)
=3+23√+13−1
=4+23√2
⟹tan(75∘)=2+3–√
Values of tan(20∘) and tan(70∘) cannot be found out simple analytically.
Here I have done ✅ xd
Similar questions