Find the value of
Answers
Answered by
0
1364 is the required answer
Answered by
1
Solution :
************************************
By Binomial theorem :
( x + a )ⁿ = ⁿC0 xⁿ+ⁿC1 x^n-1 a + ⁿC2 x^n-2a²
+ ..+ ⁿCr x^n-r a^r + ... ⁿCn a^r
**************************************
= 2[ C0 2^5 +C2 2³(√5)² +C4 2×(√5)⁴ ]
= 2[ 32 + 10 × 8 × 5 + 5 × 2 × 25]
= 2[ 32 + 400 + 250 ]
= 2 × 682
= 1364
••••
************************************
By Binomial theorem :
( x + a )ⁿ = ⁿC0 xⁿ+ⁿC1 x^n-1 a + ⁿC2 x^n-2a²
+ ..+ ⁿCr x^n-r a^r + ... ⁿCn a^r
**************************************
= 2[ C0 2^5 +C2 2³(√5)² +C4 2×(√5)⁴ ]
= 2[ 32 + 10 × 8 × 5 + 5 × 2 × 25]
= 2[ 32 + 400 + 250 ]
= 2 × 682
= 1364
••••
Similar questions