Math, asked by hhahaah, 23 hours ago

Find the value of 2da+d+a, if
2ab+a+b=3, 2bc+b+c=4, 2cd+c+d=-5.

Answers

Answered by user0888
11

\Huge\text{3}

\large\underline{\large\underline{\text{Topic}}}

Algebra- Simon's favorite factorization trick

\large\underline{\large\underline{\text{Explanation}}}

Given that,

\cdots\longrightarrow\begin{cases} 2ab+a+b=3 \\  2bc+b+c=4 \\  2cd+c+d=-5. \end{cases}

Now, it is time for Simon's favorite factorize factorization. We multiply two and add 1.

\cdots\longrightarrow\begin{cases} 4ab+2a+2b+1=7 \\  4bc+2b+2c+1=9 \\  4cd+2c+2d+1=-9. \end{cases}

By Simon's favorite factorization,

\cdots\longrightarrow\begin{cases} (2a+1)(2b+1)=7\ &\cdots(1) \\  (2b+1)(2c+1)=9\ &\cdots(2) \\  (2c+1)(2d+1)=-9. &\cdots(3) \end{cases}

By (3)\times(1)\div(2),

\cdots\longrightarrow\underline{(2d+1)(2a+1)=-7.}

We know how to rewrite (2d+1)(2a+1) from the above. Reverse the calculations by subtracting and dividing.

Accordingly,

\cdots\longrightarrow(2d+1)(2a+1)=7

\cdots\longrightarrow4da+2d+2a+1=7

\cdots\longrightarrow4da+2d+2a=6

\cdots\longrightarrow\underline{2da+d+a=3.}

So,

\cdots\longrightarrow\boxed{2da+d+a=3.}

Similar questions