Find the value of :-
Answers
Answered by
15
What is the value of cos^4 (pi/8) +cos^4 (3pi/8) +cos^4 (5pi/8) +cos^4 (7pi/8)?
cos^4(pi/8)=cos^4(pi-pi/8)=cos^4(7pi/8)—————-(1)
cos^4(3pi/8)=cos^4(pi-3pi/8)=cos^4(5pi/8)————-(2)
therefore equation becomes;
2cos^4(pi/8)+2cos^4(3pi/8)—————(3)
we know cos(x)^2=1/2*(1+cos(2x))————-(4)
and cos(x)^4=(cos(x)^2)^2——————-(5)
therefore equation (3) becomes
2*((cos(pi/8)^2)^2+(cos(3pi/8)^2)^2)————-(6)
applying (4) in (6) we have
2*((1/2*(1+cos(2*pi/8))^2)+(1/2*(1+cos(2*3pi/8))^2))
2*1/4*((1+cos(pi/4))^2+(1+cos(3pi/4))^2))———(7)
cos(pi/4)=1/sqrt(2);cos(3pi/4)=-1/sqrt(2)
therefore (7)=1/2*((1+1/sqrt(2))^2+(1-/sqrt(2))^2)
1/2*((1+1/2+1/sqrt(2))+(1+1/2–1/sqrt(2)))
1/2*(3)
=3/2
Answered by
58
Answer :-
- The value is 3/2
Solution :-
Similar questions
Math,
1 month ago
Math,
1 month ago
Math,
2 months ago
Chemistry,
10 months ago
Psychology,
10 months ago