Math, asked by THEmultipleTHANKER, 2 months ago

Find the value of

\: \: \: \bull \: \sf \:sin(40 \degree \: + \theta \:)cos(10\degree \: + \theta \:) - cos(40\degree \: + \theta \:)sin(10\degree \: + \theta \:)

Answers

Answered by vg592805
1

this is your answer please mark as brainliest

Attachments:
Answered by OyeeKanak
72

Question:-

  • Find the value of

 \odot \:  \:  \: \sf \:sin(40 \degree \: + \theta \:)cos(10\degree \: + \theta \:) - cos(40\degree \: + \theta \:)sin(10\degree \: + \theta \:)

Given:-

  •  \bf \:sin(40 \degree \: + \theta \:)cos(10\degree \: + \theta \:) - cos(40\degree \: + \theta \:)sin(10\degree \: + \theta \:)

To find:-

  • The value of given

Solution:-

   \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: :  \implies \:  \sin(40 \degree \:  +  \theta)  \cos(10 \degree \:  +  \:  \theta)  -  \cos(40 ^{ \sf \: o}  +  \theta)  \sin( 40 \degree \:  +  \theta \: )

 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \ \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \: :  \implies \:  \sin[ (40 \degree +  \theta \: )  - (10 \degree +  \theta)] \:  \:  \:  \:

We know that:-

 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{\:  \sf \:  \sin A \cos B - cosAsinB = sin(A - B)}

 =  \sf \: sin30 \degree \: (40^{o} +  \theta - 10^{ \circ}  -  \theta)

 =  \sf \: sin30 \degree \:

 \large{ \boxed{ =  \frac{1}{2} }}

 \large \dag \:  \boxed{ \purple { \underline{ \purple{ \sf \: {Hence \:  the \:  required  \: value \:  is  \: \frac{1}{2} }}}}}

Step-by-step explanation:

Additional information:-

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0 \end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}

Similar questions