Math, asked by chandavedic, 6 days ago

Find the value of

cot \frac{\pi}{8}  \\

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given expression is

\rm \: cot \: \dfrac{\pi}{8}  \\

Let assume that,

\rm \:  \: \dfrac{\pi}{8} = x \\

So, above can be rewritten as

\rm \: cotx \:  =  \: \dfrac{cosx}{sinx}  \\

On multiply numerator and denominator by 2 cosx, we get

\rm \: cotx \:  =  \: \dfrac{2cos^{2} x}{2 \: cosx \: sinx}  \\

We know,

\boxed{\sf{  \:cos2x =  {2cos}^{2}x - 1 \:  \: }} \\

and

\boxed{\sf{  \:sin2x \:  =  \: 2 \: sinx \: cosx \: }} \\

So, using these results, we get

\rm \: cotx \:  =  \: \dfrac{1 + cos2x}{sin2x}  \\

On substituting the value of x, we get

\rm \: cot\dfrac{\pi}{8} \:  =  \: \dfrac{1 + cos2\bigg(\dfrac{\pi}{8}\bigg)}{sin2\bigg(\dfrac{\pi}{8}\bigg)}  \\

\rm \: cot\dfrac{\pi}{8} \:  =  \: \dfrac{1 + cos\dfrac{\pi}{4}}{sin\dfrac{\pi}{4}}  \\

\rm \: cot\dfrac{\pi}{8} \:  =  \: \dfrac{1 + \dfrac{1}{ \sqrt{2} }}{\dfrac{1}{ \sqrt{2} }}  \\

\rm \: cot\dfrac{\pi}{8} \:  =  \: \dfrac{\dfrac{ \sqrt{2}  + 1}{ \sqrt{2} }}{\dfrac{1}{ \sqrt{2} }}  \\

Thus,

\rm\implies \:\boxed{\sf{  \:\rm \: cot\dfrac{\pi}{8} \:  =  \:  \sqrt{2}  \:  +  \: 1 \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\boxed{\sf{  \:\rm \: sin18\degree  =  \frac{ \sqrt{5}  - 1}{4} \: }} \\

\boxed{\sf{  \:\rm \: cos18\degree  =  \frac{ \sqrt{10 + 2 \sqrt{5} } }{4} \: }} \\

\boxed{\sf{  \:\rm \: sin36\degree  =  \frac{ \sqrt{10  -  2 \sqrt{5} } }{4} \: }} \\

\boxed{\sf{  \:\rm \: cos54\degree  =  \frac{ \sqrt{10  -  2 \sqrt{5} } }{4} \: }} \\

\boxed{\sf{  \:\rm \: sin72\degree  =  \frac{ \sqrt{10 + 2 \sqrt{5} } }{4} \: }} \\

\boxed{\sf{  \:\rm \: cos72\degree  =  \frac{ \sqrt{5}  - 1}{4} \: }} \\

\boxed{\sf{  \:\rm \: tan\dfrac{\pi}{8} \:  =  \:  \sqrt{2}  - 1 \:  \: }} \\

Answered by Missincridedible
6

\large\mathbb \blue{\fcolorbox{red}{yellow}{ missincredeible \: here\ }} \\

Attachments:
Similar questions