Math, asked by Anonymous, 1 month ago

Find the value of :
 \dfrac{1}{ \sin(10) }  -  \dfrac{ \sqrt{3} }{ \cos(10) }

Answers

Answered by ayan5780viie
2

Step-by-step explanation:

function y=cos−1(cosx) .

cos−1(cosx)=−x;−π≤x≤0

=x;0≤x≤π

=2π−x;π≤x≤2π

Answered by Anonymous
24

Question:

  • Find the value of the expression  \dfrac{1}{\sin(10)} - \dfrac{\sqrt{3} }{\cos(10)}  

Answer:

  • The value of the above given expression is 4

Step-by-step Explanation:

Given that:

  • Trignometric expression \tt \dfrac{1}{\sin(10)} - \dfrac{\sqrt{3} }{\cos(10)}

To Find:

  • The value of it after evaluating

Required Solution:

  • Simplifying the expression

\\ \\ {\purple{\bigstar \; {\bf{\underline{Subtracting \; the \; expressions  :}} }}} \\ \\

{ : \implies } \tt \dfrac{1}{\sin(10)} - \dfrac{\sqrt{3} }{\cos(10)} \\ \\ \\ { : \implies } \tt \dfrac{\cos(10) - \sqrt{3} \sin(10)}{\sin(10)  \;. \cos(10)}

\\ \\ {\purple{\bigstar \; {\bf{\underline{Multiplying \; with \; 1/2 \; on \; both \; sides : }}}}} \\ \\

{ : \implies } \tt \dfrac{\cos(10) - \sqrt{3} \sin(10)}{\sin(10)  \;. \cos(10)} \\ \\ \\  { : \implies } \tt \dfrac{\dfrac{1}{2} \; . \;\cos(10) -\dfrac{ \sqrt{3}}{2}  \sin(10)}{\dfrac{1}{2} \; . \;\sin(10)  \;. \cos(10)}

\\ \\ {\purple{\bigstar \; {\bf{\underline{Rewriting \; the \; Expression \; we \; get :}}}}} \\ \\

{ : \implies } \tt \dfrac{\sin(30)\; . \;\cos(10) -\dfrac{ \sqrt{3}}{2}  \sin(10)}{\dfrac{1}{2} \; . \;\sin(10)  \;. \cos(10)} \qquad \bigg\lgroup \bf \sin(30) = \dfrac{1}{2} \bigg\rgroup\\ \\ \\  { : \implies } \tt \dfrac{\sin(30)\; . \;\cos(10) - \cos(30)  \sin(10)}{\dfrac{1}{2} \; . \;\sin(10)  \;. \cos(10)} \qquad \bigg\lgroup \bf \cos(30) = \dfrac{\sqrt{3}}{2} \bigg\rgroup

\\ \\ {\purple{\bigstar \; {\bf{\underline{Simplifying\; the \; Expression \; we \; get : }}}}} \\ \\

{ : \implies } \tt \dfrac{\sin(30)\; . \;\cos(10) - \cos(30)  \sin(10)}{\dfrac{1}{2} \; . \;\sin(10)  \;. \cos(10)}  \\ \\ \\ { : \implies } \tt \dfrac{2 \times \sin(30)\; . \;\cos(10) - 2\times\cos(30)  \sin(10)}{\;\sin(10)  \;. \cos(10)}

\\ \\ {\purple{\bigstar \; {\bf{\underline{Multiplying \; with \; 2 \; on \; both \; Sides : }}}}} \\ \\

{ : \implies } \tt \dfrac{2 \times \sin(30)\; . \;\cos(10) - 2\times\cos(30)  \sin(10)}{\;\sin(10)  \;. \cos(10)} \\ \\ \\  { : \implies } \tt \dfrac{2 \times 2 \times \sin(30)\; . \;\cos(10) - 2\times\cos(30)  \sin(10)}{2 \times \;\sin(10)  \;. \cos(10)}

\\ \\ {\purple{\bigstar \; {\bf{\underline{Using \; trignometric \; Identities : }}}} }\\ \\

{ : \implies } \tt \dfrac{2 \times 2 \times \sin(30)\; . \;\cos(10) - 2\times\cos(30)  \sin(10)}{2 \times \;\sin(10)  \;. \cos(10)}\\ \\ \\ { : \implies } \tt \dfrac{4 \;\sin ( 30 - 10 )}{2 \times \;\sin(10)  \;. \cos(10)  )} \qquad \bigg\lgroup \sf \sin A \cos B - \cos B \sin A = \sin ( A - B ) \bigg \rgroup \\ \\ \\ { : \implies } \tt \dfrac{4 \;\sin ( 20 )}{\sin( 2\times 10 )}   \qquad \bigg\lgroup \sf 2 \sin A \cos A = \sin 2A \bigg \rgroup

\\ \\ {\purple{\bigstar \; {\bf{\underline{On \; Further \; simplification \; we \; get : }}}}}    \\ \\

{ : \implies } \tt \dfrac{4 \sin 20}{\sin(  \times 10 )}  \\ \\ \\ { : \implies } \tt \dfrac{4 \cancel{( \sin 20 )}}{\cancel{\sin20} } \\ \\ \\ { : \implies } {\pink{\underline{\boxed{\tt{ 4 }}}\bigstar}} \; \; \; \; \;\;\;\;

Therefore:

  • The value of the expression given above is 4

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions