Math, asked by tapatidolai, 8 months ago

Find the value of
\displaystyle\bf\:\lim_{\Delta x \to \: 0} \: \frac{3(x + \Delta x)^{2} - 3x^{2}}{\Delta x}

Answers

Answered by prince5132
44

GIVEN :-

  \\ \red \bigstar \displaystyle \bf \:  \lim_{ \ \Delta x \to \: 0} \:  \dfrac{3(x +\Delta x) ^{2}  - 3x ^{2}  }{\Delta \: x} \\ \\

TO FIND :-

 \\  \red \bigstar \: \displaystyle \bf \: value \: of  \lim_{ \ \Delta x \to \: 0} \:  \dfrac{3(x +\Delta x) ^{2}  - 3x ^{2}  }{\Delta \: x} \\ \\

SOLUTION :-

 \\ :  \implies\displaystyle \bf \:  \lim_{ \ \Delta x \to \: 0} \:  \dfrac{3(x +\Delta x) ^{2}  - 3x ^{2}  }{\Delta \: x} \\  \\

 \orange \bigstar \blue{ \tt \:By  \: using \:  identity :- (a + b)^{2} = a^{2} + 2ab + b^{2} } \\  \\

 \displaystyle  \bf \: :  \implies  \lim_{ \ \Delta x \to \: 0} \:  \dfrac{3 \{x^{2} +2 \times x \times \Delta x) + (\Delta x)^{2} \}  - 3x ^{2}  }{\Delta x} \\  \\

\displaystyle \bf  :  \implies\:  \lim_{ \ \Delta x \to \: 0} \:  \dfrac{3(x^{2} +2 x \Delta x+ \Delta x .\Delta x) - 3x ^{2}  }{\Delta x} \\  \\

\displaystyle \bf  :  \implies\:  \lim_{ \ \Delta x \to \: 0} \:  \dfrac{3x ^{2} + 6x\Delta x  + 3\Delta x\Delta x - 3x^{2}  }{\Delta x}  \\  \\

\displaystyle \bf  :  \implies\:  \lim_{ \ \Delta x \to \: 0} \:  \dfrac{3x ^{2} - 3x ^{2}  + 6x\Delta x  + 3\Delta x\Delta x  }{\Delta x}  \\  \\

\displaystyle \bf  :  \implies\:  \lim_{ \ \Delta x \to \: 0} \:  \dfrac{ 6x \cancel{\Delta x } + 3\Delta x \cancel{\Delta x }  }{ \cancel{\Delta x}}  \\  \\

\displaystyle \bf  :  \implies\:  \lim_{ \ \Delta x \to \: 0} \: 6x + 3\Delta x \\  \\

 \orange \bigstar \blue{ \tt \: On \:  Removing  \: Limit.} \\  \\

\displaystyle \bf  :  \implies\: 6x + 0 \\  \\

    \red \bigstar  \: \underline{\boxed{ \displaystyle \bf  \: \lim_{ \ \Delta x \to \: 0} \:  \dfrac{3(x +\Delta x) ^{2}  - 3x ^{2}  }{\Delta \: x}   = 6x}}

Answered by Anonymous
17

\red{\bold{\underline{\underline{Answer:}}}} </p><p></p><p>

\begin{gathered}\green{\tt{\therefore{\displaystyle \lim_{x \to 1} \: \: \frac{ {x}^{3} - 1 }{ {x}^{3} + x - 2 }=\frac{3}{4}}}}\\\end{gathered} </p><p></p><p>

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}} </p><p>

\begin{gathered}\green{\underline \bold{Given :}} \\ \tt: \implies \displaystyle \lim_{x \to 1} \: \: \frac{ {x}^{3} - 1 }{ {x}^{3} + x - 2 } \\ \\ \red{\underline \bold{To \: Find :}} \\ \tt: \implies \displaystyle \lim_{x \to 1} \: \: \frac{ {x}^{3} - 1 }{ {x}^{3} + x - 2 } = ?\end{gathered} </p><p></p><p> </p><p>

• According to given question :

\begin{gathered}\bold{As \: we \: know \: that} \\ \tt: \implies \displaystyle \lim_{x \to 1} \: \: \frac{ {x}^{3} - 1 }{ {x}^{3} + x - 2 } \\ \\ \tt \circ \: {a}^{3} - {b}^{3} = (a - b)( {a}^{2} + {b}^{2} + ab) \\ \\ \tt: \implies \displaystyle \lim_{x \to 1} \: \: \frac{ (x - 1)( {x}^{2} + {1}^{2} + x) }{ (x - 1)({x}^{2} + x + 2)} \\ \\ \tt: \implies \displaystyle \lim_{x \to 1} \: \: \frac{ ({x}^{2} + x + 1) }{ ({x}^{2} + x + 2) } \\ \\ \tt: \implies \frac{\displaystyle \lim_{x \to 1} \: \: ( {x}^{2} + x + 1) }{\displaystyle \lim_{x \to 1} \: \: ( {x}^{2} + x + 2) } \\ \\ \tt: \implies \frac{ {1}^{2} + 1 + 1}{ {1}^{2} + 1 + 2} \\ \\ \green{ \tt: \implies \displaystyle \lim_{x \to 1} \: \: \frac{ {x}^{3} - 1 }{ {x}^{3} + x - 2 } = \frac{3}{4} }\end{gathered} </p><p>

☃️Hence We Are done !!

Notice Help me :-

Inbox Me...

Similar questions