Math, asked by choudhryhello, 1 day ago

Find the value of :
\displaystyle \rm 1) \:  \frac{d}{dx} x {}^{2}
Also, Show how you got the result using the first principle method ​

Answers

Answered by YourHelperAdi
6

Given :

f(x) = x²

To Find :

The dy/dx (or derivative) of f(x)

Solution :

According to the formula we know that :

\displaystyle \rm f {}^{ \prime} ( {x}^{n} ) = n {x}^{n - 1}

So, using the formula we get that :

 \implies\displaystyle \rm \frac{d}{dx}  {x}^{2}  = 2 {x}^{2 - 1}

 \implies \: \displaystyle \rm \frac{d}{dx}  {x}^{2}  = 2x {}^{1}

\displaystyle \rm \implies  \frac{d}{dx}  {x}^{2}  = 2x

So, f'(x²) = 2x

Now, Using the First Principle Method:

We know that for differentiating any function w.r.t x , we use the first principle method :

 \to \boxed{\displaystyle \rm \lim_{h\to0} \frac{f(x + h) - f(x)}{h} }

So, let's take a po.int x on the gra.ph of f(x) , then another po.int x+h with a change in value.

f(x) at x = x²

f(x) at x+h = (x+h)²

Now, using the F.P.M, we get that :

\displaystyle \implies  \rm\lim_{x\to 0} \frac{f(x + h) - f(x)}{h}

 \implies \displaystyle \rm  \lim_{x\to0} \frac{(x + h {)}^{2}  - x {}^{2} }{h}

{ \implies \displaystyle \rm\lim_{x\to0} \frac{(x + h + x) (x + h - x)}{h} }

\displaystyle \rm \implies \lim_{x\to0} \frac{(2x + h)(h)}{h}

\displaystyle \rm \implies \lim_{x\to0} (2x + h) \cancel{ \frac{h}{h}}

 \displaystyle \rm \implies \lim_{x\to0}(2x + h)

Now, Subt.stituting the value of h as 0, we get that :

\displaystyle \rm  \implies  \frac{d}{dx}  {x}^{2}  = 2x

Similar questions