Math, asked by AdorableMe, 9 months ago

Find the value of :- \displaystyle{\sf{cos^273^\circ+cos^247^\circ+cos^273^\circ cos^2 47^\circ}}.

DON'T SPAM ✖

Answers

Answered by Anonymous
7

hey dude here is your answer.

I hope it's helpful for you ☺️

Attachments:
Answered by CunningKing
45

Correct question :-

Find the value of :-

\sf{cos^2 73^\circ + cos^2 47 ^\circ  +cos 73^\circ cos 47^\circ}

Solution :-

\sf{cos^2 73^\circ + cos^2 47 ^\circ  +cos 73^\circ cos 47^\circ}\\\\\displaystyle{\sf{= \frac{1}{2}(2cos^2 73+2 cos^2 47+2 cos73.cos47) }}\\\\\bullet\ \sf{As,\ 2cos^2\theta=cos2\theta+1}\\\\\bullet\ \sf{As,\ cosA+cosB=2cos(\frac{A+B}{2} )cos(\frac{A-B}{2} )}\\\\\displaystyle{\sf{= \frac{1}{2} (1+cos\ 147+1+cos\ 94+cos\ 120+cos\ 26)}}\\\\\displaystyle{\sf{= \frac{1}{2} (2-\frac{1}{2}+cos\ 94+cos\ 26+cos\ 146 )}}\\\\

\displaystyle{\sf{= \frac{1}{2}[\frac{3}{2}+2cos(\frac{120}{2})cos(\frac{68}{2} )+cos\ 146] }}

\displaystyle{\sf{= \frac{1}{2} (\frac{3}{2}+2 \times \frac{1}{2}\ cos\ 34+cos\ 146)}}\\\\\displaystyle{\sf{= \frac{1}{2} (\frac{3}{2}+cos\ 34+cos\ 146)}}\\\\\displaystyle{\sf{= \frac{1}{2} [\frac{3}{2}+2cos(\frac{180}{2}cos( \frac{112}{2})]}}\\\\\displaystyle{\sf{= \frac{1}{2} (\frac{3}{2}+2cos\ 90.cos\ 56)}}\\\\\displaystyle{\sf{= \frac{1}{2} (\frac{3}{2}+2\times0\times cos\ 56)}}\\\\\displaystyle{\sf{= \frac{1}{2}(\frac{3}{2} +0) }}\\\\\boxed{\boxed{\displaystyle{\sf{= \frac{3}{4} }}}}

Similar questions