Math, asked by Aaradhyashukla1725, 9 months ago

find the value of
 \frac{3 +  \sqrt{2} }{3 -  \sqrt{2} }   =  a + b \sqrt{2}
plzzzzz help fast...

.​

Answers

Answered by gloriathokchom
1

Answer:

a = a =\frac{11}{7\\}, b =\frac{6}{7} \\

Step-by-step explanation:

\frac{3+\sqrt{2} }{3-\sqrt{2} } = a + b\sqrt{2}

\frac{(3+\sqrt{2} ) (3+\sqrt{2} )}{(3-\sqrt{2) (3+\sqrt{2)} } } = a +b\sqrt{2}

\frac{(3+\sqrt{2})^{2} }{3^{2}-(\sqrt{2})^{2}  } = a+b\sqrt{2}       ( according to: ( a+b) (a-b) = a^{2} - b^{2} )

\frac{3^{2}+ 2 . 3 .\sqrt{2} + (\sqrt{2})^{2}   }{9-2} = a+b\sqrt{2}

\frac{9+6\sqrt{2}+2 }{7} = a+b\sqrt{2}

(11 + 6\sqrt{2}) 1 = 7(a + b\sqrt{2})

11+6\sqrt{2} = 7a+7b\sqrt{2}

now,

7a=11\\a = \frac{11}{7} \\  

again,

7b\sqrt{2} = 6\sqrt{2} \\7b =\frac{6\sqrt{2} }{\sqrt{2} }           ( now divide \sqrt{2} in 6\sqrt{2} by the denominator

7b = 6\\b = \frac{6}{7}

Similar questions