Math, asked by Bhanudcma, 8 months ago

Find the value of
 \frac{6}{3 \sqrt{2 } - 2 \sqrt{3}  } = 3 \sqrt{2 }    - a \sqrt{3}

Answers

Answered by Anonymous
4

Answer:

PLEASE SEE THE ATTACHED IMAGE.

a = -2

HOPE IT HELPS YOU.

THANKS.

:)

Attachments:
Answered by Anonymous
2

Answer:-

LHS:-

  \bf \implies \: \frac{6}{3 \sqrt{2}  - 2 \sqrt{3} }  \times  \frac{3 \sqrt{2} + 2 \sqrt{3}  }{3 \sqrt{2} + 2 \sqrt{3}  }  \\  \\

\bf \implies \: \frac{6(3 \sqrt{2}  + 2 \sqrt{3} )}{18 - 12}  \\  \\ \bf \implies \: \frac{6(3 \sqrt{2}  + 2 \sqrt{3} )}{6}  \\  \\ \bf \implies \:3 \sqrt{2}  + 2 \sqrt{3}  \\  \\ now \\  \\ \bf \implies \: 3 \sqrt{2}  - a \sqrt{</u><u>3</u><u>}  = 3 \sqrt{2}  + 2 \sqrt{3}  \\  \\

\bf \implies \: - a \sqrt{3}  = 2 \sqrt{3}  \\  \\ \bf \implies \: - a = 2 \\  \\ \bf \implies \:a =  - 2

Similar questions