Math, asked by Anonymous, 3 months ago

Find the value of
 h=a+x where

 x=\dfrac{2a\tan\alpha}{\tan\beta-\tan\alpha}

Answers

Answered by Anonymous
162

Here's we are given that,

\sf :\implies \red { h=a+x}

 \sf :\implies \red {x=\dfrac{2a\tan\alpha}{\tan\beta-\tan\alpha}}

⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀

\sf :\implies \purple { h=a+x}\\\\

 \sf :\implies h=a+\sf{ \dfrac{2a\tan\alpha}{\tan\beta-\tan\alpha}}\\\\

\sf :\implies h=\dfrac{a\tan\alpha+a\tan\beta}{\tan\beta-\tan\alpha}\\\\

\sf :\implies h=\dfrac{\left(\dfrac{a\sin\alpha}{\cos\alpha}+\dfrac{a\sin\beta}{\cos\beta}\right)}{\left(\dfrac{\sin\beta}{\cos\beta}-\dfrac{\sin\alpha}{\cos\alpha}\right)}\\\\

\sf :\implies h=\dfrac{\left(\dfrac{a\sin\alpha\cos\beta+a\cos\alpha\sin\beta}{\cos\alpha\cos\beta}\right)}{\left(\dfrac{\sin\beta\cos\alpha-\cos\beta\sin\alpha}{\cos\alpha\cos\beta}\right)}\\\\

 \sf :\implies h=\dfrac{a(\sin\alpha\cos\beta+\cos\alpha\sin\beta)}{\sin\beta\cos\alpha-\cos\beta\sin\alpha}\\\\

\sf{ :\implies \boxed{\underline\purple{{h=\dfrac{a\sin(\alpha+\beta)}{\sin(\beta-\alpha)}}}}}\\\\

Similar questions