Math, asked by rudraksh1185, 1 year ago

Find the value of \int _0^{\pi }\sin \left(x\right)dx

Answers

Answered by AbhijithPrakash
12

Answer:

\displaystyle\int _0^{\pi }\sin \left(x\right)dx=2

Step-by-step explanation:

\displaystyle\int _0^{\pi }\sin \left(x\right)dx

Compute the indefinite integral:

\displaystyle\int \sin \left(x\right)dx

\mathrm{Use\:the\:common\:integral}:\quad \displaystyle\int \sin \left(x\right)dx=\left(-\cos \left(x\right)\right)

=-\cos \left(x\right)

Add a constant to the solution

=-\cos \left(x\right)+C

Compute the boundaries:

\displaystyle\int _a^bf\left(x\right)dx=F\left(b\right)-F\left(a\right)=\lim _{x\to \:b-}\left(F\left(x\right)\right)-\lim _{x\to \:a+}\left(F\left(x\right)\right)

\lim _{x\to \:0+}\left(-\cos \left(x\right)\right)

\mathrm{Plug\:in\:the\:value}\:x=0

=-\cos \left(0\right)

\mathrm{Use\:the\:following\:trivial\:identity}:\quad \cos \left(0\right)=1

=-1

\lim _{x\to \:\pi -}\left(-\cos \left(x\right)\right)

\mathrm{Plug\:in\:the\:value}\:x=\pi

=-\cos \left(\pi \right)

\mathrm{Simplify\:}-\cos \left(\pi \right)

-\cos \left(\pi \right)

\mathrm{Use\:the\:following\:trivial\:identity}:\quad \cos \left(\pi \right)=\left(-1\right)

=-\left(-1\right)

\mathrm{Apply\:rule}\:-\left(-a\right)=a

=1

=1-\left(-1\right)

\mathrm{Simplify}

=2

Attachments:

rudraksh1185: Exactly Correct Answer!!
AbhijithPrakash: Thanks!!
Arjun2424: gr8 answer
AbhijithPrakash: Thanks Dude!!
Arjun2424: ☺☺
Arjun2424: welcome dear
Similar questions