Math, asked by sajan6491, 5 hours ago

Find the value of  \large \displaystyle \sf {\int \limits_0^{\pi} \bigg( \int \limits_{2\sin \theta} ^{4 \sin \theta} {r}^{3} \: dr\bigg) \: d \theta}

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\: \displaystyle \sf {\int \limits_0^{\pi} \bigg( \int \limits_{2\sin \theta} ^{4 \sin \theta} {r}^{3} \: dr\bigg) \: d \theta}

We have to first integrate with respect to r, we get

\rm \:  =  \: \displaystyle \sf\int \limits_0^{\pi}\bigg[\dfrac{ {r}^{3 + 1} }{3 + 1} \bigg] _{2\sin \theta} ^{4 \sin \theta} d\theta

\rm \:  =  \: \displaystyle \sf\int \limits_0^{\pi}\bigg[\dfrac{ {r}^{4} }{4} \bigg] _{2\sin \theta} ^{4 \sin \theta} d\theta

\rm \:  =  \: \dfrac{1}{4} \displaystyle \sf\int \limits_0^{\pi}(256 {sin}^{4}\theta - 16 {sin}^{4}\theta)  d\theta

\rm \:  =  \: \dfrac{1}{4} \displaystyle \sf\int \limits_0^{\pi}240 \: {sin}^{4}\theta  \: d\theta

\rm \:  =  \: 60 \displaystyle \sf\int \limits_0^{\pi} \: {sin}^{4}\theta  \: d\theta

We know,

\boxed{\sf{  \int_0^{2a}f(x)dx = 2\int_0^{a}f(x)dx \: \:  \:  if \: f(2a - x) = f(x)}}

So, using this can be rewritten as

\rm \:  =  \: 60  \times 2\displaystyle \sf\int \limits_0^{\dfrac{\pi}{2} } \: {sin}^{4}\theta  \: d\theta

\rm \:  =  \: 120\displaystyle \sf\int \limits_0^{\dfrac{\pi}{2} } \: {sin}^{4}\theta  \: d\theta

Using Walli's Formula, we get

\rm \:  =  \: 120 \times \dfrac{3 \times 1}{4 \times 2}  \times \dfrac{\pi}{2}

\rm \:  =  \: 15 \times 3  \times \dfrac{\pi}{2}

\rm \:  =  \:  \dfrac{45\pi}{2}

Hence,

\rm :\longmapsto\:\boxed{\tt{  \displaystyle \sf {\int \limits_0^{\pi} \bigg( \int \limits_{2\sin \theta} ^{4 \sin \theta} {r}^{3} \: dr\bigg) \: d \theta} =  \frac{45\pi}{2} }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Walli's Formula

\displaystyle \sf\int \limits_0^{\dfrac{\pi}{2} } \: {sin}^{n}\theta d\theta = \dfrac{(n - 1)(n - 3) -  -  - 2}{n(n - 2)(n - 4) -  -  -  - 1}  \: if \: n \: is \: odd

\displaystyle \sf\int \limits_0^{\dfrac{\pi}{2} } \: {cos}^{n}\theta d\theta = \dfrac{(n - 1)(n - 3) -  -  - 2}{n(n - 2)(n - 4) -  -  -  - 1}  \: if \: n \: is \: odd

\displaystyle \sf\int \limits_0^{\dfrac{\pi}{2} } \: {sin}^{n}\theta d\theta = \dfrac{(n - 1)(n - 3) -  -  - 1}{n(n - 2)(n - 4) -  -  -  - 2} \times \dfrac{\pi}{2}  \: if \: n \: is \: even

\displaystyle \sf\int \limits_0^{\dfrac{\pi}{2} } \: {cos}^{n}\theta d\theta = \dfrac{(n - 1)(n - 3) -  -  - 1}{n(n - 2)(n - 4) -  -  -  - 2} \times \dfrac{\pi}{2}  \: if \: n \: is \: even

Answered by OoAryanKingoO78
6

Answer:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\: \displaystyle \sf {\int \limits_0^{\pi} \bigg( \int \limits_{2\sin \theta} ^{4 \sin \theta} {r}^{3} \: dr\bigg) \: d \theta}

We have to first integrate with respect to r, we get

\rm \:  =  \: \displaystyle \sf\int \limits_0^{\pi}\bigg[\dfrac{ {r}^{3 + 1} }{3 + 1} \bigg] _{2\sin \theta} ^{4 \sin \theta} d\theta

\rm \:  =  \: \displaystyle \sf\int \limits_0^{\pi}\bigg[\dfrac{ {r}^{4} }{4} \bigg] _{2\sin \theta} ^{4 \sin \theta} d\theta

\rm \:  =  \: \dfrac{1}{4} \displaystyle \sf\int \limits_0^{\pi}(256 {sin}^{4}\theta - 16 {sin}^{4}\theta)  d\theta

\rm \:  =  \: \dfrac{1}{4} \displaystyle \sf\int \limits_0^{\pi}240 \: {sin}^{4}\theta  \: d\theta

\rm \:  =  \: 60 \displaystyle \sf\int \limits_0^{\pi} \: {sin}^{4}\theta  \: d\theta

We know,

\boxed{\sf{  \int_0^{2a}f(x)dx = 2\int_0^{a}f(x)dx \: \:  \:  if \: f(2a - x) = f(x)}}

So, using this can be rewritten as

\rm \:  =  \: 60  \times 2\displaystyle \sf\int \limits_0^{\dfrac{\pi}{2} } \: {sin}^{4}\theta  \: d\theta

\rm \:  =  \: 120\displaystyle \sf\int \limits_0^{\dfrac{\pi}{2} } \: {sin}^{4}\theta  \: d\theta

Using Walli's Formula, we get

\rm \:  =  \: 120 \times \dfrac{3 \times 1}{4 \times 2}  \times \dfrac{\pi}{2}

\rm \:  =  \: 15 \times 3  \times \dfrac{\pi}{2}

\rm \:  =  \:  \dfrac{45\pi}{2}

Hence,

\rm :\longmapsto\:\boxed{\tt{  \displaystyle \sf {\int \limits_0^{\pi} \bigg( \int \limits_{2\sin \theta} ^{4 \sin \theta} {r}^{3} \: dr\bigg) \: d \theta} =  \frac{45\pi}{2} }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Walli's Formula

\displaystyle \sf\int \limits_0^{\dfrac{\pi}{2} } \: {sin}^{n}\theta d\theta = \dfrac{(n - 1)(n - 3) -  -  - 2}{n(n - 2)(n - 4) -  -  -  - 1}  \: if \: n \: is \: odd

\displaystyle \sf\int \limits_0^{\dfrac{\pi}{2} } \: {cos}^{n}\theta d\theta = \dfrac{(n - 1)(n - 3) -  -  - 2}{n(n - 2)(n - 4) -  -  -  - 1}  \: if \: n \: is \: odd

\displaystyle \sf\int \limits_0^{\dfrac{\pi}{2} } \: {sin}^{n}\theta d\theta = \dfrac{(n - 1)(n - 3) -  -  - 1}{n(n - 2)(n - 4) -  -  -  - 2} \times \dfrac{\pi}{2}  \: if \: n \: is \: even

\displaystyle \sf\int \limits_0^{\dfrac{\pi}{2} } \: {cos}^{n}\theta d\theta = \dfrac{(n - 1)(n - 3) -  -  - 1}{n(n - 2)(n - 4) -  -  -  - 2} \times \dfrac{\pi}{2}  \: if \: n \: is \: even

Similar questions