Math, asked by mhetreasmita1, 5 months ago

Find the value of
 \sf \: sin^{2}O +\frac{1}{1+tan^{2}O}

Answers

Answered by Bᴇʏᴏɴᴅᴇʀ
11

Answer:-

\red{\bigstar} Value of \bf  sin^2 \theta + \dfrac{1}{1+tan^2 \theta}  \large\leadsto{\tt\purple{1}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Given:-

\sf  sin^2 \theta + \dfrac{1}{1+tan^2 \theta}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Solution:-

\sf sin^2 \theta + \dfrac{1}{1+tan^2 \theta}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

We know,

\purple{\bigstar} \underline{\boxed{\bf\green{sec^2 \theta = 1+tan^2 \theta}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf sin^2 \theta + \dfrac{1}{sec^2 \theta}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Also,

\purple{\bigstar} \underline{\boxed{\bf\green{cos \theta = \dfrac{1}{sec \theta}}}}

\sf sin^2 \theta + cos^2 \theta

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

We know,

\purple{\bigstar} \underline{\boxed{\bf\green{sin^2 \theta + cos^2 \theta = 1}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\large{\bf\pink{1}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Therefore, the value of \bf  sin^2 \theta + \dfrac{1}{1+tan^2 \theta} is 1.

Answered by tarracharan
4

Answer:

\sf{➙\:sin^{2}\theta +\dfrac{1}{1+tan^{2}\theta } \leadsto} \boxed{\bold{\red{1}}}

\:

To find :-

\sf{➪\:sin^{2}\theta +\dfrac{1}{1+tan^{2}\theta }}

\:

Solution :-

\sf{➪\:sin^{2}\theta +\dfrac{1}{1+tan^{2}\theta }}

\sf{= sin^{2}\theta +\dfrac{1}{sec²\theta}}

\sf{=sin^{2}\theta +cos²\theta=}\bold{\red{1}}

\:

Formula to remember:

\sf{•\:sin²\theta + cos²\theta = 1}

\sf{•\:sec²\theta - tan²\theta = 1}

\sf{•\:cosec²\theta + cot²\theta = 1}

Similar questions