Math, asked by Toxicbanda, 4 days ago

Find the value of:

\sf{\sqrt{3\sqrt{3\sqrt{3\sqrt{3\sqrt{3\sqrt{3}}}}}}}

\sf{a).\;3^{31/64}}
\sf{b).\;3^{31/32}}
\sf{c).\;3^{1/64}}
\sf{d).\;None\;of\;these}

Quality Answer only!!!

Answers

Answered by Anonymous
57

Answer:

 \large \dag Question :-

Find the value of

 \sqrt{3 \sqrt{3 \sqrt{3 \sqrt{3 \sqrt{3 \sqrt{3} } } } } }

 \large \dag Answer :-

  • Option D)None of these .

 \large \dag Solutions :-

 \sqrt{} (3( \sqrt{3 \sqrt{3 \sqrt{3 \sqrt{3.3 {}^{ \frac{1}{2} } } } } } )

 = (3(3(3(3(3.3 { \frac{1}{2} }^{} ) {}^{ \frac{1}{2} })  {}^{ \frac{1}{2} } ) {}^{ \frac{1}{2} } ) {}^{ \frac{1}{2} } ) {}^{ \frac{1}{2} } )

  • Which can also be written as,

 {3}^{1. \frac{1}{2} . \frac{1}{2} . \frac{1}{2}. \frac{1}{2} . \frac{1}{2}  . \frac{1}{2}. }  =  {3}^{ \frac{63}{64} }

 \large \dag Hope it helps u mate .

 \large \dag Thank you .

Answered by Anonymous
9

Need to evaluate:-

  • \sf{\sqrt{3\sqrt{3\sqrt{3\sqrt{3\sqrt{3\sqrt{3}}}}}}}

Solution:-

Inorder to solve this problem, we must know the exponential properties.

\boxed{\begin{array}{l}\underline{\text{Law of Exponents :}}\\\\\bullet\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}\\\\\bullet\:\:\sf{(a^m)^n = a^{mn}}\\\\\bullet\:\:\sf(a^m)(a^n) = a^{m + n}\\\\\bullet\:\:\sf\dfrac{1}{a^n} = a^{-n}\\\bullet \:\:\sf\sqrt[\sf n]{\sf a} = (a)^{\dfrac{1}{n}}\end{array}}

We will solve this question by using these properties.

: \implies\sf{\sqrt{3\sqrt{3\sqrt{3\sqrt{3\sqrt{3\sqrt{3}}}}}}}

: \implies\sf{\sqrt{3\sqrt{3\sqrt{3\sqrt{3\sqrt{3. {3}^{ \frac{1}{2} } }}}}}}

: \implies\sf{\sqrt{3\sqrt{3\sqrt{3\sqrt{3\sqrt{ {3}^{ \frac{1}{2} + 1 } }}}}}}

: \implies\sf{\sqrt{3\sqrt{3\sqrt{3\sqrt{3\sqrt{ {3}^{ \frac{3}{2} } }}}}}}

: \implies\sf{\sqrt{3\sqrt{3\sqrt{3\sqrt{3. {3}^{ \frac{3}{2}. \frac{1}{2}}}}}}}

: \implies\sf{\sqrt{3\sqrt{3\sqrt{3\sqrt{3. {3}^{ \frac{3}{4}}}}}}}

: \implies\sf{\sqrt{3\sqrt{3\sqrt{3\sqrt{ {3}^{ \frac{3}{4} + 1}}}}}}

: \implies\sf{\sqrt{3\sqrt{3\sqrt{3\sqrt{ {3}^{ \frac{7}{4} }}}}}}

: \implies\sf{\sqrt{3\sqrt{3\sqrt{3. {3}^{ \frac{7}{4}. \frac{1}{2}}}}}}

: \implies\sf{\sqrt{3\sqrt{3\sqrt{3. {3}^{ \frac{7}{8}}}}}}

: \implies\sf{\sqrt{3\sqrt{3\sqrt{ {3}^{ \frac{7}{8} + 1}}}}}

: \implies\sf{\sqrt{3\sqrt{3\sqrt{ {3}^{ \frac{15}{8}}}}}}

: \implies\sf{\sqrt{3\sqrt{3. {3}^{ \frac{15}{8}. \frac{1}{2}}}}}

: \implies\sf{\sqrt{3\sqrt{3. {3}^{ \frac{15}{16}}}}}

: \implies\sf{\sqrt{3\sqrt{{3}^{ \frac{31}{16}}}}}

: \implies\sf{\sqrt{3.{3}^{ \frac{31}{16}. \frac{1}{2}}}}

: \implies\sf{\sqrt{3.{3}^{ \frac{31}{32}}}}

: \implies\sf{\sqrt{{3}^{ \frac{31}{32} + 1}}}

: \implies\sf{\sqrt{{3}^{ \frac{63}{32} }}}

: \implies\sf{{3}^{ \frac{63}{32}. \frac{1}{2}}}

: \implies\sf{{3}^{ \frac{63}{64}}}

Therefore,

 \boxed{\sf\sqrt{3\sqrt{3\sqrt{3\sqrt{3\sqrt{3\sqrt{3}}}}}}  =  {3}^{ \frac{63}{64} } }

Option (D) non of these is the correct answer.

Similar questions