Math, asked by tctechnical01, 1 month ago

Find the value of
\sin(− 19π /3 )

dont spam or i will report..​​

Answers

Answered by user0888
10

\large{\textrm{\underline{Given:-}}}

\sin(-\dfrac{19\pi}{3})

\large{\textrm{\underline{To find:-}}}

The given value.

\large{\textrm{\underline{Solution:-}}}

f(x)=\sin x is a periodic function with the period of 2\pi. This is because the function is defined on a circle. The radius returns to the same position after revolving 2\pi n.

\hookrightarrow\ \  -\dfrac{19\pi}{3}=(-4)\times 2\pi +\dfrac{5\pi }{3}

Putting this into the function, we get the following.

\hookrightarrow \ \ \sin\left(-\dfrac{19}{3}\pi \right)

\hookrightarrow \ \ =\sin \left(\dfrac{5}{3} \pi \right)\ \text{[Periodicity]}

\hookrightarrow \ \ =\sin\left(2\pi-\dfrac{\pi}{3} \right)

\hookrightarrow \ \ =\sin\left(-\dfrac{\pi}{3} \right)\ \text{[Periodicity]}

\hookrightarrow \ \ =-\sin\left(\dfrac{\pi }{3} \right)\ \text{[Odd Function]}

\hookrightarrow \ \ =-\dfrac{\sqrt{3} }{2}\ \text{(\underline{ANSWER.})}

\large{\textrm{\underline{Note:-}}}

The value of the function can be found in the following method. For comparison, I put the second answer below.

Assume we have an angle in the form of \dfrac{n}{2} \pi \pm\theta.

➊ First, if n is odd change the function as follows. If even, keep the function.

  • \sin \rightarrow \cos,\ \sin\rightarrow \cos,\ \tan \rightarrow \dfrac{1}{\tan}

➋ Second, consider \theta as an acute angle.

➌ Lastly, check if the value of the previous function is positive or negative at \dfrac{n}{2} \pi \pm\theta. If negative, put the negative sign. If positive, put the positive sign.

\large{\textrm{\underline{Verification:-}}}

For example, we have \sin \left(\dfrac{5\pi}{3} \right).

We have \dfrac{5}{3} \pi =\dfrac{4}{2} \pi-\dfrac{1}{3} \pi which is in the form of \dfrac{n}{2} \pi \pm\theta.

➊ Here, n=4 and \theta=\dfrac{1}{3} \pi. Keep the function.

➋ Second, \theta is an acute angle.

\dfrac{5}{3} \pi lies on the 4th quadrant. The previous function, f(x)=\sin x has a negative value at the quadrant. Put negative sign.

\sin\left(\dfrac{5\pi}{3} \right)=-\sin\left(\dfrac{1}{3} \pi \right)=-\dfrac{\sqrt{3} }{2} \ \text{(\underline{ANSWER.})}

Answered by TrustedAnswerer19
9

{ \boxed{\boxed{\begin{array}{cc}  \leadsto \bf \:  Given  \:  :  \:  \:   \\  \\ \bf \: \: sin( -  \frac{19\pi}{3})  \\  \\  \sf \: we \: have \: to \: evaluate \: that \: \end{array}}}}

Now,

{ \boxed{\boxed{\begin{array}{c | c} \underline{   \sf \: Process \:  \:  \: }& \underline{ \sf \: Explanation} \\  \\  \bf \: sin( -  \frac{19\pi}{3} )& \\ \\  \bf  = - sin( \frac{19\pi}{3} )&  \{\bf \because \: sin( -  \theta) =  - sin \theta \} \\  \\  \bf =  - sin(6\pi +  \frac{\pi}{3})  & \\  \\  =  \bf  - sin( \frac{\pi}{3} )&  \{\bf \because \: sin(6\pi +  \theta) = sin \theta \\ & \bf \:  {1}^{st}  \: quadrant \:  \} \\  \\  \bf =  -  \frac{ \sqrt{3} }{2} &  \{\bf \because \: sin \frac{ {\pi} }{3}  =  \frac{ \sqrt{3} }{2}  \} \\  \\ \end{array}}}}

\pink{ \boxed{\boxed{\begin{array}{cc}  \leadsto  \: \bf \: Final  \: answer \:  : \\  \\  \to \bf \: sin( -  \frac{19\pi}{3}) =  -  \frac{ \sqrt{3} }{2}   \end{array}}}}

Similar questions