Math, asked by hasithanalla, 1 year ago

find the value of
 {  \sin }^{2} 30 -  { \cos }^{2} 30

Answers

Answered by rajsingh24
6

Step-by-step explanation:

sin^2 30-cos^2 30.

(1/2)^2 - (√3/2)^2.

1/4 -3/4

= -1/2.

HOPE IT'S HELPS YOU...

Answered by Anonymous
30

 \large \fbox{ \:  \sf \red{ A}n \blue{s}w \pink{e}r  : \sf \:  \: \sf  \underline{}}

  \star\:  \: \sf { \sin }^{2} (30) -  { \cos }^{2} (30) =   - \frac{1}{2}

 \large \fbox{ \:  \sf \red{ S}o \blue{l}u \pink{t}i \green{o}n: \:  \: \sf \underline{}}

  \sf \hookrightarrow { \sin }^{2} (30) -  { \cos }^{2} (30) \\  \\   \sf \hookrightarrow { (\frac{1}{2}) }^{2}  -  {( \frac{ \sqrt{3} }{2}) }^{2}  \\  \\  \sf   \underline{ Taking \:  LCM  \: , \:  we \:  obtain \:  \: }  \\  \\   \sf \hookrightarrow \frac{1}{4}  -  \frac{3}{4}  \\  \\   \sf  \hookrightarrow \frac{1  -  3}{4}  \\  \\ \sf   \hookrightarrow -   \frac{ \cancel{ 2}}{ \cancel{4}}  \\  \\  \sf  \hookrightarrow -   \frac{  1}{2}

Hence , the final value is -1/2

Similar questions