Find the value of
Answers
ANSWER:--------
{2tan−132 }
{=tan−12(23)1−(23)2\mathrm}
{=tan^{-1}\frac{2(\frac{2}{3})}{1-(\frac{2}{3})^{2}}}
{=tan−11−(32)22(32)}
{=tan−1431−49\mathrm}
{=tan^{-1}\frac{\frac{4}{3}}{1-\frac{4}{9}}}{=tan−11−9434}
=tan−1439−49\mathrm{=tan^{-1}\frac{\frac{4}{3}}{\frac{9-4}{9}}}=tan−199−434
=tan−1(43∗95)\mathrm{=tan^{-1}(\frac{4}{3}*\frac{9}{5})}=tan−1(34∗59)
=tan−1125\mathrm{=tan^{-1}\frac{12}{5}}=tan−1512
=sin−112122+52\mathrm{=sin^{-1}\frac{12}{\sqrt{12^{2}+5^{2}}}}=sin−1122+5212
=sin−112169\mathrm{=sin^{-1}\frac{12}{\sqrt{169}}}=sin−116912
=sin−11213\mathrm{=sin^{-1}\frac{12}{13}}=sin−11312
→2tan−123=sin−11213\to \mathrm{2tan^{-1}\frac{2}{3}=sin^{-1}\frac{12}{13}}→2tan−132=sin−11312
→sin(2tan−123)=sin(sin−11213)\to \mathrm{sin(2tan^{-1}\frac{2}{3})=sin(sin^{-1}\frac{12}{13})}→sin(2tan−132)=sin(sin−11312)
→sin(2tan−123)=1213\to \mathrm{sin(2tan^{-1}\frac{2}{3})=\frac{12}{13}}→sin(2tan−132)=1312
Then,sin(2tan−123)+cos(tan−13)\mathrm{Then,\:sin(2tan^{-1}\frac{2}{3})+cos(tan^{-1}\sqrt{3})}Then,sin(2tan−132)+cos(tan−13)
=1213+cosπ3\mathrm{=\frac{12}{13}+cos\frac{\pi}{3}}=1312+cos3π
=1213+12\mathrm{=\frac{12}{13}+\frac{1}{2}}=1312+21
=24+1326\mathrm{=\frac{24+13}{26}}=2624+13
=3726\mathrm{=\frac{37}{26}}=2637
→sin(2tan−123)+cos(tan−13)=3726\to \boxed{\mathrm{sin(2tan^{-1}\frac{2}{3})+cos(tan^{-1}\sqrt{3})=\frac{37}{26}}}→sin(2tan−132)+cos(tan−13)=2637
Rules :‾\underline{\text{Rules :}}Rules :
1.2tan−1x=tan−12x1−x2\mathrm{1.\:2tan^{-1}x=tan^{-1}\frac{2x}{1-x^{2}}}1.2tan−1x=tan−11−x22x
2.tan−1xy=sin−1xx2+y2\mathrm{2.\:tan^{-1}\frac{x}{y}=sin^{-1}\frac{x}{\sqrt{x^{2}+y^{2}}}}2.tan−1yx=sin−1x2+y2
HOPE IT HELPS:--------
T!—!ANKS!!!!