Math, asked by Anonymous, 1 year ago

Find the Value of
 \sqrt{12 +  \sqrt{12 +  \sqrt{12 +  \sqrt{12 + .... \infty } } } }  = \:   ?

Answers

Answered by Anonymous
103

AnswEr :

Let's Know the Rule First of Solving Question like this :

 \mathsf{\sqrt{a +  \sqrt{a + \sqrt{a +  \sqrt{a + ... \infty } } } } }

We Will Break a into the form of {n × (n + 1)}

⋆ And the Answer will be (n + 1) in the situation of Addition.

Just like that we can follow this too :

 \mathsf{\sqrt{a  -   \sqrt{a  -  \sqrt{a  -   \sqrt{a  -  ... \infty } } } } }

We Will Break a into the form of {n × (n + 1)}

⋆ And the Answer will be n in the situation of Subtraction.

Now Let's Head to the Question :

 \mathsf{\sqrt{12 +  \sqrt{12 + \sqrt{12 +  \sqrt{12 + ... \infty } } } } }

  • We Can Break 12 in the Form of {n × (n + 1)} as {3 × (3 + 1)}
  • n = 3 and, (n + 1) = (3 + 1) = 4

⋆ As we will take (n + 1) as Answer. That's why Required Answer will be 4.

 \mathsf{\sqrt{12 +  \sqrt{12 + \sqrt{12 +  \sqrt{12 + ... \infty } } } } = 4 }

━━━━━━━━━━━━━━━━━━━━━━━━

If You Want to Solve this By Complete Method then here You Go :

Let's Assume x is Equal to ;

 \longrightarrow\mathsf{x = \sqrt{12 +  \sqrt{12 + \sqrt{12 +  \sqrt{12 + ... \infty } } } } }

  • Squaring Both Sides

 \longrightarrow\mathsf{ {(x)}^{2}  =  \bigg(\sqrt{12 +  \sqrt{12 + \sqrt{12 +  \sqrt{12 + ... \infty } } } } \bigg)^{2}  }

 \longrightarrow\mathsf{ {x}^{2}  = 12 +  {\sqrt{12 + \sqrt{12 +  \sqrt{12 + ... \infty } } } } }

 \longrightarrow\mathsf{ {x}^{2}  = 12 +x}

  • As we have taken Value of \mathsf{x = \sqrt{12 +  \sqrt{12 + \sqrt{12 +  \sqrt{12 + ... \infty } } } } }

 \longrightarrow\mathsf{ {x}^{2} - x - 12 = 0 }

 \longrightarrow\mathsf{ {x}^{2} - 4x  + 3x- 12 = 0 }

 \longrightarrow\mathsf{ x(x - 4)  + 3(x - 4) = 0 }

 \longrightarrow\mathsf{(x - 4)(x  + 3) = 0}

 \longrightarrow\mathsf{ x = 4 \:  \: or \:  \: x =  - 3}

⋆ we will Ignore the Value of x = - 3

 \longrightarrow\mathsf{\sqrt{12 +  \sqrt{12 + \sqrt{12 +  \sqrt{12 + ... \infty } } } } = 4 }

჻ Therefore, Value will be 4.

Similar questions