Math, asked by alkalamate, 10 months ago

find the value of

 \sqrt{15 + 10 \sqrt{2} }   +  \sqrt{15 - 10 \sqrt{2 } }

Answers

Answered by MaheswariS
13

\text{Consider,}

\bf\displaystyle\,15+10\sqrt{2}

=\displaystyle\,10+5+2(5)\sqrt{2}

=\displaystyle\,(\sqrt{10})^2+(\sqrt{5})^2+2(\sqrt{5})(\sqrt{5})\sqrt{2}

=\displaystyle\,(\sqrt{10})^2+(\sqrt{5})^2+2(\sqrt{10})(\sqrt{5})

\text{Using, }

\boxed{\bf\,a^2+b^2+2ab=(a+b)^2}

=\displaystyle\,(\sqrt{10}+\sqrt{5})^2

\implies\displaystyle\,15+10\sqrt{2}=(\sqrt{10}+\sqrt{5})^2

\implies\bf\displaystyle\sqrt{15+10\sqrt{2}}=\sqrt{10}+\sqrt{5} .....(1)

\bf\displaystyle\,15-10\sqrt{2}

=\displaystyle\,10+5-2(5)\sqrt{2}

=\displaystyle\,(\sqrt{10})^2+(\sqrt{5})^2-2(\sqrt{5})(\sqrt{5})\sqrt{2}

=\displaystyle\,(\sqrt{10})^2+(\sqrt{5})^2-2(\sqrt{10})(\sqrt{5})

\text{Using, }

\boxed{\bf\,a^2+b^2-2ab=(a-b)^2}

=\displaystyle\,(\sqrt{10}-\sqrt{5})^2

\implies\displaystyle\,15+10\sqrt{2}=(\sqrt{10}-\sqrt{5})^2

\implies\bf\displaystyle\sqrt{15-10\sqrt{2}}=\sqrt{10}-\sqrt{5} ......(2)

\text{Adding (1) and (2), we get}

\displaystyle\sqrt{15+10\sqrt{2}}+\sqrt{15-10\sqrt{2}}

=\sqrt{10}+\sqrt{5}+\sqrt{10}-\sqrt{5}

=2\sqrt{10}

\therefore\textbf{The value of $\bf\sqrt{15+10\sqrt{2}}+\sqrt{15-10\sqrt{2}}$ is $\bf\,2\sqrt{10}$}

Answered by hunny9754
2

Answer:

After dividing both side root 2 so answer will be =4.975

Similar questions