Math, asked by nirajkumarbnt, 2 months ago

find the value of ;-
 \sqrt{432 }  \times  \sqrt{8748}
plz answer...
don't spam..
spam will be reported.. ​

Answers

Answered by mathdude500
20

\large\underline{\sf{Solution-}}

Consider

 \green{ \boxed{ \bf \: Prime  \: factorization \: of \: 432}}

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:432\: \:\:}}}\\ {\underline{\sf{2}}}& \underline{\sf{\:\:216\:\:\:}} \\  {\underline{\sf{2}}}& \underline{\sf{\:\:108\:\:\:}} \\  {\underline{\sf{2}}}& \underline{\sf{\:\:54\:\:\:}} \\  {\underline{\sf{3}}}& \underline{\sf{\:\:27\:\:\:}} \\  {\underline{\sf{3}}}& \underline{\sf{\:\:9\:\:\:}} \\  {\underline{\sf{3}}}& \underline{\sf{\:\:3\:\:\:}} \\{\sf{}}&\underline{\sf{\:\:1\ \:\:}}\end{array}\end{gathered}\end{gathered}\end{gathered}

 \green{ \boxed{ \bf \: Prime  \: factorization \: of \: 432 =  {2}^{4} \times  {3}^{3}}}

Consider,

 \green{ \boxed{ \bf \: Prime  \: factorization \: of \: 8748}}

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:8748\: \:\:}}}\\ {\underline{\sf{2}}}& \underline{\sf{\:\:4374\:\:\:}} \\  {\underline{\sf{3}}}& \underline{\sf{\:\:2187\:\:\:}} \\  {\underline{\sf{3}}}& \underline{\sf{\:\:729\:\:\:}} \\  {\underline{\sf{3}}}& \underline{\sf{\:\:243\:\:\:}} \\  {\underline{\sf{3}}}& \underline{\sf{\:\:81\:\:\:}} \\  {\underline{\sf{3}}}& \underline{\sf{\:\:27\:\:\:}} \\  {\underline{\sf{3}}}& \underline{\sf{\:\:9\:\:\:}} \\  {\underline{\sf{3}}}& \underline{\sf{\:\:3\:\:\:}} \\{\sf{}}&\underline{\sf{\:\:1\ \:\:}}\end{array}\end{gathered}\end{gathered}\end{gathered}

 \green{ \boxed{ \bf \: Prime  \: factorization \: of \: 8748 =  {2}^{2} \times  {3}^{7}}}

Now,

\rm :\longmapsto\: \sqrt{432} \times  \sqrt{8748}

 \rm \:  =  \:  \:  \sqrt{432 \times 8748}

 \rm \:  =  \:  \:  \sqrt{ {2}^{4} \times  {3}^{3}  \times  {2}^{2}  \times  {3}^{7} }

 \rm \:  =  \:  \:  \sqrt{ {2}^{6}  \times  {3}^{10}    }

 \rm \:  =  \:  \:  {2}^{3} \times  {3}^{5}

 \rm \:  =  \:  \: 8 \times 243

.

 \rm \:  =  \:  \: 1944

Hence,

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underbrace{\boxed{\bf \: \sqrt{432} \times  \sqrt{8748} = 1944 \: }}

Additional Information :-

\boxed{ \sf \:  \sqrt{ {x}^{2} } = x}

\boxed{ \sf \:  \sqrt{ {x}^{4} } =  {x}^{2} }

\boxed{ \sf \:  \sqrt{x \times y} =  \sqrt{x}  \times  \sqrt{y}}

\boxed{ \sf \:  \sqrt{\dfrac{x}{y} } = \dfrac{ \sqrt{x} }{ \sqrt{y} }}

Answered by ItzDinu
9

\begin{gathered}{\Huge{\textsf{\textbf{\underline{\underline{\purple{Answer:}}}}}}}\end{gathered}

\impliesPlease Drop Some Thanks.

Attachments:
Similar questions