Math, asked by kalasesharmila, 8 months ago

find the value of
 \sqrt{47089}  +  \sqrt{24336}

Answers

Answered by sakshisingh27
1

**********************************************

Square root:

The square root of a number is that

number ,whose square is equal to the

given number.

*********************************************

Now , write the numbers 47089 and

24336 as product prime.

i ) 47089 = ( 7 × 7 ) × ( 31 × 31 )

Sqrt ( 47089 ) = 7 × 31 = 217

ii)24336 = ( 2 × 2 ) × ( 2 × 2 ) × ( 3 × 3 )

( 13 × 13 )

Sqrt ( 24336 ) = 2 × 2 × 3 × 13 = 156

Therefore ,

Sqrt ( 47089 ) + sqrt ( 24336 )

= 217 + 156

= 373

<b><body bgcolor=pink><marquee scrollamount="3" direction="left"><font color=purple></b>hello ..✌

<b><body bgcolor=pink><marquee scrollamount="3" direction="left"><font color=purple></b>Follow me and thanks on my 10 answer to get inbox now ..✌

Answered by Rohith200422
2

Question:

Find the value of :-

\sqrt{47089}+ \sqrt{24336}

To find:

★ To find the value of given expression.

Answer:

The  \: value \:  is \: \underline{ \: \underline{ \:  \sf \pink{ \bf373 } \: }\: }.

Step-by-step explanation:

Now,

Finding L.C.M. ( Prime factorisation )

1.  \bold{47089}

\begin {array}{r | 1 } 7 & 47089 \\ \cline{2-2} 7 & 6727 \\ \cline{2-2} 7 & 6727 \\ \cline{2-2}  7 & 961 \\ \cline{2-2} 31 & 31 \\ \cline{2-2} & 1 \end {array}

47089 =7  \times 7  \times 31 \times 31

 \sqrt{47089}  = 7 \times 31

 \boxed{ \sqrt{47089}  = 217}

2.  \bold{ 24336 }

\begin {array}{r | 1 } 2 & 24336 \\ \cline{2-2} 2 & 12168 \\ \cline{2-2} 2 & 6084 \\ \cline{2-2}  2 & 3042 \\ \cline{2-2} 2 & 1521 \\ \cline{2-2} 3 & 507 \\ \cline{2-2} 3 & 169 \\ \cline{2-2} 13 & 13 \\ \cline{2-2} & 1 \end {array}

24336 =2  \times 2  \times 2 \times 2 \times 3 \times 3 \times 13 \times 13

 \sqrt{24336}  = 2 \times 2 \times 3 \times 13

 \boxed{ \sqrt{24336}  = 156}

Thus, \sqrt{47089}+ \sqrt{24336}

Now substituting the values,

 \implies 217 + 156

 \implies  \bf{373}

 \therefore The value is 373 .

Test yourself:

\bigstar \sqrt{77065} + \sqrt{56336}

\bigstar \sqrt{4589} + \sqrt{26746}

Similar questions