Math, asked by Anonymous, 10 months ago

find the value of
 \sqrt{i}

Answers

Answered by jigyasa0310
2

see the image attached by me ✔️✔️

(what happened to u friend) ☹️

Attachments:
Answered by Rohith200422
8

Question:

Find the value of  \sqrt{i} .

Answer:

The\: value \: of \: \underline{\sf\pink{\sqrt{i \: }} \: is \:  \sf\pink{\frac{1}{ \sqrt{2} }  +  \frac{1}{ \sqrt{2} } i}}

Step-by-step explanation:

 \sqrt{i \: }  =  \:  ?

Where,   {(i)}^{2}  =  - 1

Let us start with complex number (i.e)  x\:or\:y\:or\:z

z = x + iy

 \therefore  {z}^{2}  =  i

 \longmapsto  {z}^{2}  =  {(x + iy)}^{2}

 \longmapsto  {z}^{2}  =  {x}^{2}  + 2xiy +  {i}^{2}  {y}^{2}

 \longmapsto  {z}^{2}  =  ({x}^{2} -  {y}^{2}  ) + 2xiy

We know that,

 \boxed{ {z}^{2}  = i = 0 +1 i} \: thus,

 \bull \: ( {x}^{2}  -  {y}^{2} ) = 0 \: ---> (1)

 \bull \: 2xy = 1 \: ---> (2)

Now, ( 1 )

 \hookrightarrow  {x}^{2}  =  {y}^{2}

 \hookrightarrow \boxed{  y =  ±x}

Now substituting the value of y in ( 2 )

\rightsquigarrow 2 {x}^{2}  = ±x

\rightsquigarrow  \boxed{{x}^{2}  = ± \frac{1}{2} }

\therefore The values are,

 \bull \: x = y =  \frac{1}{ \sqrt{2} }

 \bull \: x = y =  -  \frac{1}{ \sqrt{2} }

 \bull \: x =\frac{1}{ \sqrt{2} } i, \: y = -  \frac{1}{ \sqrt{2} } i

 \bull \: x = - \frac{1}{ \sqrt{2} } i, \: y = \frac{1}{ \sqrt{2} } i

Now, ( a )

\Longrightarrow \: z =  \frac{1}{ \sqrt{2} } i \:  -   {\big(\:  \frac{1}{ \sqrt{2} }  i\big)}^{2}

\Longrightarrow \:  \underline{ \: z =  \frac{1}{ \sqrt{2} }  \:   + \:  \frac{1}{ \sqrt{2} }  i \: }

Now, ( b )

\longrightarrow \: z =   - \frac{1}{ \sqrt{2} } i \:   +   {\big(\:  \frac{1}{ \sqrt{2} }  i\big)}^{2}

\longrightarrow \:  \underline{ \: z =  -  \frac{1}{ \sqrt{2} }  \:    -  \:  \frac{1}{ \sqrt{2} }  i \: }

Thus,  z =  \frac{1}{ \sqrt{2} }  \:   + \:  \frac{1}{ \sqrt{2} }  i\:and\:-  \frac{1}{ \sqrt{2} }  \:    -  \:  \frac{1}{ \sqrt{2} }  i

Now evaluating principle  \underline{ \ :\sqrt{i} \:}

\therefore \:  \boxed { \bf \sqrt{i \: }  =  \frac{1}{ \sqrt{2} }  +  \frac{1}{ \sqrt{2} } i}

Similar questions