Math, asked by vikrampatil5812, 2 months ago

Find the value of
(x  \frac{1}{3}  + x \frac{ - 1}{3} )(x \frac{2}{3}  + x \frac{ - 2}{3}  - 1)
if when
x = 8

Answers

Answered by sujayG17
1

Answer:

0

Explanation:

Solution is in picture

Attachments:
Answered by mathdude500
6

\large\underline{\bold{Given \:Question - }}

 \sf \: Find  \: the \:  value  \: of  \: (x^ \frac{1}{3} + x ^\frac{ - 1}{3} )(x ^\frac{2}{3} + x ^\frac{ - 2}{3} - 1)  \: when \: x = 8.

\large\underline{\bold{Solution-}}

We know that

 \bf \:  {x}^{3}  +  {y}^{3}  = (x + y)( {x}^{2}  +  {y}^{2}  - xy)

 \tt \: Put \: x \:  =  \:  {x}^{\frac{1}{3} } \:  \: and \:  \: y \:  =  \:  {x}^{ -  \frac{1}{3} }  ,  \: we \: get

  \bf \: {\bigg( {x}^{\frac{1}{3}}\bigg) }^{3} \:+\:{\bigg( {x}^{ \frac{ - 1}{3} }  \bigg) }^{3} = (x^ \frac{1}{3} + x ^\frac{ - 1}{3} )(x ^\frac{2}{3} + x ^\frac{ - 2}{3} - x^ \frac{1}{3} x^{ -  \frac{1 }{3}} )

 \bf \: x +  {x}^{ - 1}  =  \sf \: (x^ \frac{1}{3} + x ^\frac{ - 1}{3} )(x ^\frac{2}{3} + x ^\frac{ - 2}{3} - 1)  \:

 \bf \: Hence,  \: (x^ \frac{1}{3} + x ^\frac{ - 1}{3} )(x ^\frac{2}{3} + x ^\frac{ - 2}{3} - 1)  \: = x + \dfrac{1}{x}

Put x = 8, we get

  \therefore \: \sf \: x + \dfrac{1}{x}  = 8 + \dfrac{1}{8}  = \dfrac{64 + 1}{8}  = \dfrac{65}{8}

Hence,

The value of

 \sf \:\: (x^ \frac{1}{3} + x ^\frac{ - 1}{3} )(x ^\frac{2}{3} + x ^\frac{ - 2}{3} - 1)  \:,  \: when \: x = 8 \: is \: \dfrac{65}{8}

Additional Important Identities :-

 \boxed{ \bf{ \:  {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy}}

 \boxed{ \bf{ \:  {(x - y)}^{2}  =  {x}^{2}  +  {y}^{2}  - 2xy}}

 \boxed{ \bf{ \:  {x}^{2}  -  {y}^{2}  = (x + y)(x - y)}}

 \boxed{ \bf{ \:  {(x + y)}^{3}  =  {x}^{3}  +  {y}^{3}  + 3xy(x + y)}}

 \boxed{ \bf{ \:  {(x + y)}^{3}  =  {x}^{3}  + 3 {x}^{2} y + 3x {y}^{2}  +  {y}^{3} }}

 \boxed{ \bf{ \:  {(x - y)}^{3}  =  {x}^{3}  - 3 {x}^{2} y +  {3y}^{2} x -  {y}^{3} }}

 \boxed{ \bf{ \:  {x}^{3}  -  {y}^{3}  = (x  - y)( {x}^{2}  +  {y}^{2}  + xy}}

 \boxed{ \bf{ \:  {x}^{4}   -  {y}^{4}  = (x - y)(x + y)( {x}^{2}  +  {y}^{2} )}}

Similar questions