Math, asked by TheLoyalYatharth, 6 months ago

find the value of the above question​

Attachments:

Answers

Answered by Darkrai14
2

Let,

\rm\sqrt{25+10\sqrt{6}} + \sqrt{25-10\sqrt{6}} = x

Squaring both the sides,

\rm\dashrightarrow\bigg (\sqrt{25+10\sqrt{6}} + \sqrt{25-10\sqrt{6}} \bigg )^2= x^2

We know that,

(a + b)² = a² + b² + 2ab

Hence,

\rm\dashrightarrow\bigg (\sqrt{25+10\sqrt{6}} \bigg )^2 + \bigg ( \sqrt{25-10\sqrt{6}} \bigg )^2+2\sqrt{25+10\sqrt{6}}\sqrt{25-10\sqrt{6}}= x^2

\rm\dashrightarrow 25+10\sqrt{6}+ 25-10\sqrt{6}+2\sqrt{25+10\sqrt{6}}\sqrt{25-10\sqrt{6}}= x^2

We know that,

√a√b = √ab

Hence,

\rm\dashrightarrow 25+10\sqrt{6}+25-10\sqrt{6}+2\sqrt{(25+10\sqrt{6})(25-10\sqrt{6})}= x^2

-106 and 106 get cancelled.

Take 5 as common factor in 25+106 as well as 25-106

\rm\dashrightarrow 25+25+2\sqrt{5(5+2\sqrt{6})5(5-2\sqrt{6})}= x^2

\rm\dashrightarrow 50+2\sqrt{25[(5+2\sqrt{6})(5-2\sqrt{6})]}= x^2

- = (a + b)(a - b)

\rm\dashrightarrow 50+2\sqrt{25[(5)^2-(2\sqrt{6})^2]}= x^2

\rm\dashrightarrow 50+2\sqrt{25(25-24)}= x^2

\rm\dashrightarrow 50+2\sqrt{25(1)}= x^2

\rm\dashrightarrow 50+2\sqrt{25}= x^2

25 = 5

\rm\dashrightarrow 50+2(5)= x^2

\rm\dashrightarrow 50+10= x^2

\rm\dashrightarrow 60= x^2

\rm\dashrightarrow \sqrt{60}= x

\rm\dashrightarrow \sqrt{2 \times 2 \times 15}= x

\rm\dashrightarrow 2\sqrt{15}= x

Hence,

\bf\dashrightarrow x= 2\sqrt{15}

Hence, simplified.

Similar questions