Math, asked by subashinisanju, 7 months ago

find the value of the
angles x,y and z

Attachments:

Answers

Answered by Anonymous
2

Answer:

z=30( Vertically Opposite Angles)

x+30+90=180( Linear pair)

x=180-30-90

x=60

y+z=180(Linear pair)

y+30=180

y=180-30

y=150

This is your answer.

Hope this helps you!

Step-by-step explanation:

Answered by sethrollins13
54

Given :

  • Two angles are 90° and 30° .

To Find :

  • Value of x , y and z .

Solution :

\longmapsto\tt\bf{z=30^{\circ}\:(V.O.A)}

Now ,

\longmapsto\tt{30^{\circ}+x+90^{\circ}=180^{\circ}\:(Angles\:on\:one\:line)}

\longmapsto\tt{120^{\circ}+c=180^{\circ}}

\longmapsto\tt{x=180^{\circ}-120^{\circ}}

\longmapsto\tt\bf{x=60^{\circ}}

Also ,

\longmapsto\tt{y+z=180^{\circ}\:(Linear\:Pair)}

\longmapsto\tt{y+30^{\circ}=180^{\circ}}

\longmapsto\tt{y=180^{\circ}-30^{\circ}}

\longmapsto\tt\bf{y=150^{\circ}}

Therefore :

\longmapsto\tt\bf{Value\:of\:x=60^{\circ}}

\longmapsto\tt\bf{Value\:of\:y=150^{\circ}}

\longmapsto\tt\bf{Value\:of\:z=30^{\circ}}

Attachments:
Similar questions