Find the value of the constant s such that the scalar product of the vector i+j+k with the unit vector patallel to the sum of thw vectors 2i+4j-5k and si+2j +3k is equal to one
Answers
Answered by
0
Let a→ = i + j + k,
b→ = 2i + 4j – 5k
and c→ = si + 2j + 3k.
And b→ + c→
= 2i + 4j – 5k + si + 2j + 3k
= (2 + s)i + 6j – 2k.
Therefore,
|b→ + c→| = √{(2 + s)2 + (6)2 + (–2)2}
= √(4 + s2 + 4s+ 36 + 4)
= √(s2 + 4s + 44)
As per question,
a→.[{b→ + c→}/|b→ + c→|] = 1
Or,
(i + j + k).[{(2 + s)i + 6j – 2k}/√(s2+ 4s + 44)] = 1
Or, {(2 + s) + 6 – 2}/√(s2 + 4s + 44) = 1
Or, s + 6 = √(s2 + 4s + 44)
Or, Squaring both sides, we get
s2 + 36 + 12s = s2 + 4s+ 44
Or, s2 + 12s– s2 – 4s = 44 – 36
Or, 8s= 8
=> s= 1.
It can be ur answer...
b→ = 2i + 4j – 5k
and c→ = si + 2j + 3k.
And b→ + c→
= 2i + 4j – 5k + si + 2j + 3k
= (2 + s)i + 6j – 2k.
Therefore,
|b→ + c→| = √{(2 + s)2 + (6)2 + (–2)2}
= √(4 + s2 + 4s+ 36 + 4)
= √(s2 + 4s + 44)
As per question,
a→.[{b→ + c→}/|b→ + c→|] = 1
Or,
(i + j + k).[{(2 + s)i + 6j – 2k}/√(s2+ 4s + 44)] = 1
Or, {(2 + s) + 6 – 2}/√(s2 + 4s + 44) = 1
Or, s + 6 = √(s2 + 4s + 44)
Or, Squaring both sides, we get
s2 + 36 + 12s = s2 + 4s+ 44
Or, s2 + 12s– s2 – 4s = 44 – 36
Or, 8s= 8
=> s= 1.
It can be ur answer...
Similar questions