Math, asked by payalrathod090, 3 months ago

Find the value of the deteaminats
3 -4 5
1 1 2
2 3 1

Answers

Answered by brokendreams
0

-22 is the determinant of the given matrix.

Step-by-step explanation:

Given: Matrix A = \left[\begin{array}{ccc}3&-4&5\\1&1&2\\2&3&1\end{array}\right]

To Find: Determinant |A| of the given matrix A

Solution:

  • Determinant of the matrix

Determinant of any matrix can be calculated as,

\begin{vmatrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{vmatrix} = a_{11} \begin{vmatrix}a_{22}&a_{23}\\a_{32}&a_{33}\end{vmatrix} - a_{12} \begin{vmatrix}a_{21}&a_{23}\\a_{31}&a_{33}\end{vmatrix} + a_{13} \begin{vmatrix}a_{21}&a_{22}\\a_{31}&a_{32}\end{vmatrix}

= a_{11} (a_{22}a_{33} - a_{23}a_{32}) - a_{12} (a_{21}a_{33} - a_{23}a_{31}) + a_{13} (a_{21}a_{32} - a_{22}a_{31})

  • Finding the determinant of the matrix A

We have given the matrix,

A = \left[\begin{array}{ccc}3&-4&5\\1&1&2\\2&3&1\end{array}\right]

Such that the determinant is

|A| = 3 ((1 \times 1 ) - (2 \times 3)) - (-4) ((1 \times 1 ) - (2 \times 2)) + 5 ((1 \times 3 ) - (1 \times 2))\\

\Rightarrow |A| = 3 (-5) + 4 (-3) + 5 (1) = -22

Hence, the determinant |A| of the matrix A is -22

Similar questions