Math, asked by somesh420, 1 year ago

find the value of the determinant 7/3 5/3 3/2 1//2

Attachments:

Answers

Answered by Chaitanya1696
4

The value of the determinant 7/3 5/3 3/2 1/2

Attachments:
Answered by pulakmath007
11

\displaystyle\begin{vmatrix}  \dfrac{7}{3}  & \dfrac{5}{3} \\ \\  \dfrac{3}{2} & \dfrac{1}{2} \end{vmatrix}  =  -  \frac{4}{3}

Given :

\displaystyle\begin{vmatrix}  \dfrac{7}{3}  & \dfrac{5}{3} \\ \\  \dfrac{3}{2} & \dfrac{1}{2} \end{vmatrix}

To find :

The value of the determinant

Solution :

Step 1 of 2 :

Write down the given determinant

Here the given determinant is

\displaystyle\begin{vmatrix}  \dfrac{7}{3}  & \dfrac{5}{3} \\ \\  \dfrac{3}{2} & \dfrac{1}{2} \end{vmatrix}

Step 2 of 2 :

Find the value of the determinant

\displaystyle\begin{vmatrix}  \dfrac{7}{3}  & \dfrac{5}{3} \\ \\  \dfrac{3}{2} & \dfrac{1}{2} \end{vmatrix}

\displaystyle \sf{  = \bigg( \frac{7}{3}  \times  \frac{1}{2} \bigg) - \bigg( \frac{5}{3}  \times  \frac{3}{2} \bigg)}

\displaystyle \sf{ =  \frac{7}{6}  -  \frac{15}{6}   }

\displaystyle \sf{ =  \frac{7 - 15}{6}    }

\displaystyle \sf{ =  \frac{ - 8}{6}    }

\displaystyle \sf{ =  -  \frac{8}{6}    }

\displaystyle \sf{ =  -  \frac{4}{3}    }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If [1 2 3] B = [34], then the order of the matrix B is

https://brainly.in/question/9030091

2. For a square matrix A and a non-singular matrix B of the same order, the value of det(B inverse AB) is:

https://brainly.in/question/23783093

#SPJ3

Similar questions