Math, asked by GhostHellBoy, 9 months ago

Find the value of the
determinants...

Attachments:

Answers

Answered by Anonymous
7

Solution:-

 \implies\begin{vmatrix}x+\lambda & x & x\\x & x+\lambda & x \\x& x & x+\lambda \end{vmatrix}

Now we can use this

 \rm \: C_1 \to \: C_1 + C_2 + C_3

We will get

 \implies\begin{vmatrix}3x+\lambda & x & x\\3x +  \lambda & x+\lambda & x \\3x +  \lambda& x & x+\lambda \end{vmatrix}

Take common

 3x +  \lambda

we get

 \implies3x +  \lambda\begin{vmatrix}1 & x & x\\1& x+\lambda & x \\1& x & x+\lambda \end{vmatrix}

Now

 \rm \: R_2 \to \: R_2 - R_1 \\  \rm \: R_3 \to \: R_ 3 - R_1

we get

 \implies3x +  \lambda\begin{vmatrix}1 & x & x\\0& \lambda & 0\\0& 0 & \lambda \end{vmatrix}

Taking determinant

 \rm \: C_1 \:  \:  \: and \:  \:  \: R_1

we get

 = 3x +  \lambda  \times 1 (  { \lambda}^{2}  - 0)

so answer is

 \Delta =   { \lambda}^{2} (3x +  \lambda)

Similar questions