Math, asked by superpack9pawararun, 4 months ago

.Find the value of the discriminant of the equation x2+ 10x-7=0.​

Answers

Answered by Anonymous
28

\underline{\frak{\quad  \purple{Given:-} \quad}} \\

 \sf \qquad \bullet  {x}^{2}  + 10x - 7 = 0 \\

\underline{\frak{\quad  \purple{Find:-} \quad}} \\

 \sf \qquad \bullet Discriminant \\

\underline{\frak{\quad  \purple{Solution:-} \quad}} \\

Here, f1st compare given eq. with ax² + bx + c = 0

So,

a = 1

b = 10

c = -7

Now, Using

 \huge{\underline{\boxed{\sf Discriminant =  {b}^{2}  - 4ac}}} \\

 \sf where  \small{\begin{cases} \sf a = 1 \\  \sf b = 10 \\  \sf c =  - 7\end{cases}} \\

\red\bigstar Substituting these values:-

 \dashrightarrow\sf D =  {b}^{2}  - 4ac \\  \\

 \dashrightarrow\sf D =  {(10)}^{2}  - 4(1)( - 7) \\  \\

 \dashrightarrow\sf D =100 - 4( - 7) \\  \\

 \dashrightarrow\sf D =100  + 28 \\  \\

 \dashrightarrow\sf D =128 \\  \\

 \small{\underline{\boxed{\sf \therefore Discriminant \: of \: eq.  \: x^2 + 10x -7=0  \: is  \: 128}}} \\

Answered by Anonymous
35

  \huge\bigstar \:   \huge\mathrm { \underline{ \purple{given} }} \:  \bigstar

 \\

  • Equation is x² + 10x - 7

 \\

\huge\bigstar \:   \huge\mathrm { \underline{ \purple{to \: find} }} \:  \bigstar \:

 \\

  • Discriminant.

 \\

\huge\bigstar \:   \huge\mathrm { \underline{ \purple{solution} }} \:  \bigstar \:  \\  \\

Discriminant = b² - 4ac

Where ,

  • a coefficient of x²

  • b coefficient of x

  • c constant

▬▬▬▬▬▬▬

Here ,

  • a = 1

  • b = 10

  • c = -7

➥ Putting values , we get

 \sf \: {discriminant =  {b}^{2}  - 4ac} \\  \ \\  \sf{discriminant =  {10}^{2} - 4(1)( - 7) } \\  \\  \sf{discriminant = 100 + 28}

 \therefore \:  \bf{ \red{discriminant \:   = 128}}

More to know :-

  • The quadratic equation discriminant is important because it tells us the number and type of solutions. This information is helpful because it serves as a double check when solving quadratic equations by any of the four methods (factoring, completing the square, using square roots, and using the quadratic formula).
Similar questions