Math, asked by nithika45, 1 year ago

find the value of the followibg ((3_7)^3)^7=(3_7)^3n

Answers

Answered by rajeev378
17
\huge\boxed{\texttt{\fcolorbox{red}{aqua}{Hey Mate!!!}}}
<b><i><font face=Copper black size=4 color=blue>
Here is your answer

(( \frac{3}{7} ) {}^{3} ) {}^{7}  = ( \frac{3}{7} ) {}^{3n}  \\  \\ ( \frac{3}{7} ) {}^{3 \times 7}  = ( \frac{3}{7} ) {}^{3n}  \\  \\ as \: same \: base \: so \: power \: is \: same \\  \\ 3 \times 7 = 3n \\  \\ n =  \frac{3 \times 7}{3}  \\  \\ n = 7
Therefore the value of n is 7
\large{\red{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\underline{\underline{\underline{Hope\:it\:helps\: you}}}}}}}}}}}}}}}

\huge\boxed{\texttt{\fcolorbox{Red}{yellow}{Be brainly!!!}}}

<marquee>
\huge\bf{\red{\huge{\bf{@.....rajeev378}}}}
Answered by MonarkSinghD
9
Hi friends

Here is your answer

 ( \frac{3}{7} ) {}^{3 \times 7}  = ( \frac{3}{7} ) {}^{3n}  \\  \\   3n = 3 \times 7 \\ n =  \frac{21}{3}  \\ n = 7
Hope it helps you

@MSD
Similar questions