Math, asked by xXExoticExplorerXx, 7 months ago

find the value of the following

➊ ( 2⁰ + 3-¹ ) × 3²
 \tt ➋  \: (3 ^{ - 1} \times {6}^{ - 1}) \div {3}^{ - 2}
 \tt ➌  \: ( \frac{1}{3} ) ^{ - 2} + ( \frac{1}{4} ) ^{ - 2} + ( \frac{1}{5} ) ^{ - 2}
 \tt ➍ \: ( {2}^{ - 1} + {3}^{ - 1} + {4}^{ - 1}) ^{0}
 \tt ➎ \: [( \frac{ - 1}{3} ) ^{ - 2} ] ^{2}
➏ [ { (-⅓) ²} -² ] -¹

[Also tell about exponent ( in additional information ಠಿ_ಠ )]

✔️ Quality answer needed
❌No spam baccho xD

\(°o°)/ 30 points​

Answers

Answered by Anonymous
55

 \huge\rm { ☆_!! Question !_! ☆}

find the value of the following:-

➊ \:    \tt  ( 2⁰ + 3 ^{ - 1}  ) × 3²

⇢    \tt  ( 1 +  \dfrac{1}{3}   ) × 9

⇢    \tt  (\dfrac{3 + 1}{3}   ) × 9

⇢    \tt  (\dfrac{4}{ \cancel{3}}   ) × { \cancel{9}} = 12

__________________________________________

\tt ➋ \: (3 ^{ - 1} \times {6}^{ - 1}) \div {3}^{ - 2}

\tt ⇢ \: ( \dfrac{1}{3}  \times  \dfrac{1}{6} ) \div  \dfrac{1}{ {3}^{2} }

\tt ⇢ \: \dfrac{1}{18}   \div  \dfrac{1}{9}

\tt ⇢ \: \dfrac{ \cancel{1}}{18}   \div  \dfrac{9}{ \cancel{1}} =  \dfrac{1}{2}

__________________________________________

➌ \: ( \dfrac{1}{3} ) ^{ - 2} + ( \dfrac{1}{4} ) ^{ - 2} + ( \dfrac{1}{5} ) ^{ - 2}

⇢  \tt {3}^{2}  +  {4}^{2}  +  {5}^{2}

⇢  \tt 9  +  16  + 25

⇢  \tt 50

__________________________________________

➍ \tt ( {2}^{ - 1} + {3}^{ - 1} + {4}^{ - 1}) ^{0}

⇢ \tt (  \dfrac{1}{2}  +  \dfrac{1}{3}  + \dfrac{1}{4} ) ^{0}

⇢ \tt (  \dfrac{6 + 4 + 3}{12}) ^{0}

⇢ \tt (  \dfrac{13}{12}) ^{0} = 1

__________________________________________

➎ \tt [( \dfrac{ - 1}{3} ) ^{ - 2} ] ^{2}

⇢ \tt ( \dfrac{ - 1}{3} ) ^{ - 2}    \times    ^{2}

⇢ \tt ( \dfrac{ - 1}{3} ) ^{ 4}   = ( \dfrac{ 3}{ - 1} ) ^{ 4}

⇢ \tt (  - 3 ) ^{ 4}  = 81

__________________________________________

➏ [ { (-⅓) ²} -² ] -¹

⇢ \tt [ ( \dfrac{ - 1}{3} ) ^{2} ]  ^{( - 2) \times ( - 1)}  = [ (\dfrac{ - 1}{3} ) ^{2} ]  ^{ - 2 }

⇢ \tt   (\dfrac{ - 1}{3}  ^{2}   ) ^{2 \times 2}  =  (\dfrac{ - 1}{3}  ^{2}   ) ^{4}

⇢ \tt     \dfrac{ (- 1) ^{4} }{(3) ^{4} }  =  \dfrac{1 }{81 }

||━━━━━━━━━━━━━━━━━━━━━━||

⭐ ADDITIONAL INFORMATION ⭐

||━━━━━━━━━━━━━━━━━━━━━━||

» Repeated multiplication of a number/thing by itself can be shown by exponents.

» For example, 2 x 2 x 2 x 2 x 2 = 25. Here '2', which is being multiplied by itself is called the base and '5' which tells the number of times 2 is being multiplied by itself is known as the exponent.

» The number  \tt 2^{5} can be read as '2 raised to power 5'. The exponent is written higher than the base and its size is smaller than that of the base.

» For any non - zero integers/rational numbers a and b, and whole numbers m and n

➊  \:  \tt  {a}^{m}  \times  {a}^{n}  = a ^{m + n}

➋   \:  \tt  {a}^{m}   \div   {a}^{n}  = a ^{m  -  n}

➌    \:  \tt  ({a}^{m} )^{n}   = a ^{m    n}

➍     \:  \tt  {a}^{m}  \times  {b} ^{m}   = (ab) ^{m}

➎ \:  \tt  {a}^{m}   \div   {b} ^{m}   = ( \dfrac{a}{b} ) ^{m}

➏ \:  \tt  {a}^{0}   = 1

Attachments:
Similar questions