Find the value of the following (explain too)
Answers
We Have,
Thus Value of a and b are 0 and 2 respectively.
Step-by-step explanation:
=
3
−1
3
+1
−
3
−1
3
−1
=a+b
3
⇒ \frac{( \sqrt{3} + 1 {)}^{2} - ( \sqrt{3} - 1 {)}^{2} }{( \sqrt{3} - 1)( \sqrt{3} + 1) } = a + b \sqrt{3}⇒
(
3
−1)(
3
+1)
(
3
+1)
2
−(
3
−1)
2
=a+b
3
\left[ \text{Using Formula = } {a}^{2} - {b}^{2} = (a + b)(a - b)\right][Using Formula = a
2
−b
2
=(a+b)(a−b)]
⇒ \frac{( \sqrt{3} + 1 + \sqrt{3} - 1)( \sqrt{3} + 1 - \sqrt{3} + 1) }{(( \sqrt{3} {)}^{2} - {1}^{2} ) }⇒
((
3
)
2
−1
2
)
(
3
+1+
3
−1)(
3
+1−
3
+1)
⇒ \frac{2 \sqrt{3} \times 2 }{3 - 1} = a + b \sqrt{3}⇒
3−1
2
3
×2
=a+b
3
⇒2 \sqrt{3} = a + b \sqrt{3}⇒2
3
=a+b
3
\textbf{Comparing L.H.S Ans R.H.S we get,}Comparing L.H.S Ans R.H.S we get,
b = 2 \: \textbf{and} \: a = 0b=2anda=0