Math, asked by adhiraj2310, 2 months ago

Find the value of the following (explain too)
\frac{\sqrt{3} +1}{\sqrt{3} -1} = a+b\sqrt{3}\frac{\sqrt{3} +1}{\sqrt{3} -1} = a+b\sqrt{3}

Answers

Answered by itzPapaKaHelicopter
6

\huge \fbox \blue{Answer★}

We Have,

 =  \frac{ \sqrt{3} + 1 }{ \sqrt{3} - 1 }  -  \frac{ \sqrt{3}  - 1}{ \sqrt{3} - 1 }  = a + b \sqrt{3}

⇒ \frac{( \sqrt{3}  + 1 {)}^{2}  - ( \sqrt{3} - 1 {)}^{2}  }{( \sqrt{3} - 1)( \sqrt{3}  + 1) }  = a + b \sqrt{3}

\[ \left[ \text{Using Formula  = }  {a}^{2}   -  {b}^{2}  = (a + b)(a - b)\right] \]

⇒ \frac{( \sqrt{3}  + 1 +  \sqrt{3} - 1)( \sqrt{3}  + 1 -  \sqrt{3}  + 1) }{(( \sqrt{3}  {)}^{2} -  {1}^{2} ) }

⇒ \frac{2 \sqrt{3} \times 2 }{3 - 1}  = a + b \sqrt{3}

⇒2 \sqrt{3}  = a + b \sqrt{3}

 \textbf{Comparing L.H.S Ans R.H.S we get,}

b = 2 \:  \textbf{and}  \: a = 0

Thus Value of a and b are 0 and 2 respectively.

 \\  \\  \\  \\  \\  \\  \\  \\  \\ \sf \colorbox{gold} {\red★ANSWER ᵇʸ ⁿᵃʷᵃᵇ⁰⁰⁰⁸}

Answered by Anonymous
0

Step-by-step explanation:

=

3

−1

3

+1

3

−1

3

−1

=a+b

3

⇒ \frac{( \sqrt{3} + 1 {)}^{2} - ( \sqrt{3} - 1 {)}^{2} }{( \sqrt{3} - 1)( \sqrt{3} + 1) } = a + b \sqrt{3}⇒

(

3

−1)(

3

+1)

(

3

+1)

2

−(

3

−1)

2

=a+b

3

\left[ \text{Using Formula = } {a}^{2} - {b}^{2} = (a + b)(a - b)\right][Using Formula = a

2

−b

2

=(a+b)(a−b)]

⇒ \frac{( \sqrt{3} + 1 + \sqrt{3} - 1)( \sqrt{3} + 1 - \sqrt{3} + 1) }{(( \sqrt{3} {)}^{2} - {1}^{2} ) }⇒

((

3

)

2

−1

2

)

(

3

+1+

3

−1)(

3

+1−

3

+1)

⇒ \frac{2 \sqrt{3} \times 2 }{3 - 1} = a + b \sqrt{3}⇒

3−1

2

3

×2

=a+b

3

⇒2 \sqrt{3} = a + b \sqrt{3}⇒2

3

=a+b

3

\textbf{Comparing L.H.S Ans R.H.S we get,}Comparing L.H.S Ans R.H.S we get,

b = 2 \: \textbf{and} \: a = 0b=2anda=0

Similar questions