find the value of the given que
Attachments:
Answers
Answered by
33
Answer :-
→ sin(45°+θ)*cos(15°+θ) - cos(45°+θ)*sin(15°+θ)
we know That ,
☛ sinA*cosB - cosA*sinB = sin(A - B)
comparing we get,
➼ A = (45°+θ)
➼ B = (15°+θ)
So,
☞ sin(45°+θ)*cos(15°+θ) - cos(45°+θ)*sin(15°+θ)
☞ sin[ (45°+θ) - (15°+θ) ]
☞ sin[ 45° - 15° + θ - θ ]
☞ sin30°
☞ (1/2) (Ans).
Answered by
11
To Find:
Value of
Solution:
Let 45°+θ be P and 15°+θ be Q
So,
⇒ P-Q= 45°+θ-(15°+θ)
⇒ P-Q= 45°+θ-15°-θ
⇒ P-Q= 30° -------------(1)
We know that,
- sin(A-B)= sinAcosB-cosAsinB
So, by applying above identity, we get
sinP×cosQ-cosP×sinQ =sin(P-Q)
From (1)
So,
Hence, the required value is .
Similar questions