Math, asked by xerpatenzi, 3 months ago

Find the value of the given question below




who ever does it right now i will mark brainiest.

Attachments:

Answers

Answered by nannugupta2007
0

Answer:

if you find helpful please mark as brilliant

Attachments:
Answered by 12thpáìn
3

Question

  • \\ \bf \bigstar { \:  \dfrac{ {2}^{n + 2} \times ({ {2}^{n - 1}) }^{n + 1}   }{ {2}^{n(n - 1)} } \div  {4}^{n}  }

\\\text{\bf Step by step explanation}

{ \sf ~~~~~:\implies~~ \dfrac{ {2}^{n + 2} \times ({ {2}^{n - 1}) }^{n + 1}   }{ {2}^{n(n - 1)} } \div  {4}^{n}  }

{ \sf ~~~~~:\implies~~ \dfrac{ {2}^{n + 2} \times ( {2}^{(n - 1)(n + 1)})    }{ {2}^{n \times n -n \times  1} } \div  ({ {2}^{2} })^{n}  }

  •  \small\text{Using identity : \tiny  \gray{(a-b)(a+b) = a² \: -b²}}

{ \sf ~~~~~:\implies~~ \dfrac{ {2}^{n + 2} \times  {2}^{ {n}^{2} -  {1}^{2}  }   }{ {2}^{ {n}^{2}  - n} } \div  {2}^{2n}  }

{ \sf ~~~~~:\implies~~ \dfrac{ {2}^{n + 2} \times  {2}^{ {n}^{2} -  1  }   }{ {2}^{ {n}^{2}  - n} } \div  {2}^{2n}  }

{ \sf ~~~~~:\implies~~ \dfrac{ {2}^{n + 2 +  {n}^{2} - 1 }    }{ {2}^{ {n}^{2}  } \times  {2}^{ - n}  } \div  {2}^{2n}  }

{ \sf ~~~~~:\implies~~ \dfrac{ {2}^{  {n}^{2} + n  + 1 }    }{ {2}^{ {n}^{2}  } \times   \dfrac{1}{ {2}^{n} }   } \div  {2}^{2n}  }

{ \sf ~~~~~:\implies~~  \dfrac{ {2}^{  {n}^{2} + n  + 1 }    }{  \dfrac{ {2}^{  {n}^{2}  } }{ {2}^{n} }   }  \div  {2}^{2n}  }

{ \sf ~~~~~:\implies~~  \left({2}^{  {n}^{2} + n  + 1 }  \times  \dfrac{ {2}^{n} }{ {2}^{ {n}^{2} } } \right) \div  {2}^{2n}  }

{ \sf ~~~~~:\implies~~  \left({2}^{ \cancel{  {n}^{2}} + n  + 1   + n  \: \cancel{ -   {n}^{2}} } \right) \div  {2}^{2n}  }

{ \sf ~~~~~:\implies~~ {2}^{  2n + 1 }  \div  {2}^{2n}  }

{ \sf ~~~~~:\implies~~ {2}^{  1 +  \cancel{2n}  \cancel{ - 2n } }   }

{ \sf ~~~~~:\implies~~ 2    } \\  \\

\sf ~~~~~♥~~~~~§ { \:  \dfrac{ {2}^{n + 2} \times ({ {2}^{n - 1}) }^{n + 1}   }{ {2}^{n(n - 1)} } \div  {4}^{n}  =  \orange{\bf{2} }} \\  \\  \\  \\

More to know:-

\red{ \tiny\begin{gathered}\begin{gathered}\\\\\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \bigstar \: \underline{\bf{}}\\ {\boxed{\begin{array}{c | c}  \frac{ \:  ~~~~~~~~~~\:  \:  \:  \:  \:\sf  Laws \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }{ } &\frac{ \: ~~~~~~~~~~ \:  \:  \:  \:  \:\sf Example  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }{}\\ \sf \bigstar{a}^{m} \times {a}^{n} = {a}^{m + n} & \sf {a}^{2}  \times  {a}^{3} =  {a}^{2 + 3} =  {a}^{6}    \\ \\  \sf \bigstar{a}^{m} \div {a}^{n} = {a}^{m - n}& \sf {a}^{3} \div  {a}^{2}  =  {a}^{3 - 2} =  {a}^{1}     \\ \\ \sf{\bigstar \:  \:  \:  \:  \:  \: ( {a}^{m} ) ^{n} = {a}^{mn} } & \sf( {a}^{2} ) ^{3} = {a}^{2 \times 3} =  {a}^{6}  \\  \\  {\bigstar\sf a {}^{m} \times {n}^{m} = (ab) ^{m} } &\sf a {}^{2} \times {b}^{2} = (ab) ^{2}\\  \\  \sf\bigstar  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \: \:  \:  \: {a}^{0} = 1& \sf {2}^{0} = 1 \:  \:  \:  \:    \\  \\  \sf \bigstar  \:  \:  \: \: {\dfrac{ {a}^{m} }{ {b}^{m} }= \left( \dfrac{a}{b} \right) ^{m} }&  \sf{\dfrac{ {a}^{2} }{ {b}^{2} }=  \left( \dfrac{a}{b} \right) ^{2} }\\\\\bigstar~~~~~~~ \sf x^{\frac{m}{n} }=\sqrt[n]{x^m}\sf   = (\sqrt[n]{x})^m  & \sf x^{\frac{2}{3} }=\sqrt[3]{x^2} = (\sqrt[n]{x})^m\\   \\\\ \end{array}}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}}

Similar questions