Find the value of the other trigonometric ratios given that (1) cos theta = 5/13
Answers
Answered by
2
Cos theta = 5/13
Base / Hypotenuse = 5/13
Base : Hypotenuse = 5 : 13
Let the base = 5a
Hypotenuse = 13a
Perpendicular = sqrt [ (13a)^2 - (5a)^2]
= sqrt ( 169a^2 - 25a^2)
= sqrt ( 144a^2)
= 12a
Sin theta = P/H = 12a / 13a = 12 /13
Cos theta = 5 /13
Tan theta = P / B = 12a / 5a = 12 / 5
Cosec theta = 1/sin theta = 13/12
Sec theta = 1/ cos theta = 13 /5
Cot theta = 1/ tan theta = 5 /12
Base / Hypotenuse = 5/13
Base : Hypotenuse = 5 : 13
Let the base = 5a
Hypotenuse = 13a
Perpendicular = sqrt [ (13a)^2 - (5a)^2]
= sqrt ( 169a^2 - 25a^2)
= sqrt ( 144a^2)
= 12a
Sin theta = P/H = 12a / 13a = 12 /13
Cos theta = 5 /13
Tan theta = P / B = 12a / 5a = 12 / 5
Cosec theta = 1/sin theta = 13/12
Sec theta = 1/ cos theta = 13 /5
Cot theta = 1/ tan theta = 5 /12
Answered by
9
Cos theta = 5/13 = B/H
B = 5 and H = 13.
By Pythagoras theroem,
( H )² = ( B)² + (P)²
( P)² = (H)² - (B)²
( P )² = (13)² - (5)²
P² = 144
P = √144
P = 12.
Therefore,
Sin theta = P/H = 12/13
Cos theta = B/H = 5/13
Tan theta = P/B = 12/5
Cosec theta = H/P = 13/12
Sec theta = H/B = 13/5
And,
Cot theta = B/P = 5/12
B = 5 and H = 13.
By Pythagoras theroem,
( H )² = ( B)² + (P)²
( P)² = (H)² - (B)²
( P )² = (13)² - (5)²
P² = 144
P = √144
P = 12.
Therefore,
Sin theta = P/H = 12/13
Cos theta = B/H = 5/13
Tan theta = P/B = 12/5
Cosec theta = H/P = 13/12
Sec theta = H/B = 13/5
And,
Cot theta = B/P = 5/12
Similar questions