find the value of the polynomial 3 into power of 3 - 4 into power of 2 + 7 into minus 5 when x is equal to 3
Answers
Answer:
Let p(x) =3x3 – 4x2 + 7x – 5
At x= 3, p(3) = 3(3)3 – 4(3)2 + 7(3) – 5
= 3×27-4×9 + 21-5 = 81-36+21-5 P( 3) =61
At x = -3, p(-3)= 3(-3)3 – 4(-3)2 + 7(-3)- 5
= 3(-27)-4×9-21-5 = -81-36-21-5 = -143 p(-3) = -143
Hence, the value of the given polynomial at x = 3 and x = -3 are 61 and -143, respectively.
Answer:
Answer below
Step-by-step explanation:
Given, the polynomial is 3x³ - 4x² + 7x - 5.
We have to find the value of the polynomial at x = 3 and x = -3.
Let p(x) = 3x³ - 4x² + 7x - 5
p(3) = 3(3)³ - 4(3)² + 7(3) - 5
= 3(27) - 4(9) + 21 - 5
= 81 + 21 - 36 - 5
= 102 - 41
= 61
Therefore, at x = 3 the value of the polynomial is 61.
p(-3) = 3(-3)³ - 4(-3)² + 7(-3) - 5
= 3(-27) - 4(9) - 21 - 5
= -81 - 36 - 26
= -81 - 62
= -143
Therefore, at x = -3 the value of the polynomial is -143.